skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Offline RL+CKG: A hybrid AI model for cybersecurity tasks
AI models for cybersecurity have to detect and defend against constantly evolving cyber threats. Much effort is spent building defenses for zero days and unseen variants of known cyber-attacks. Current AI models for cybersecurity struggle with these yet unseen threats due to the constantly evolving nature of threat vectors, vulnerabilities, and exploits. This paper shows that cybersecurity AI models will be improved and more general if we include semi-structured representations of background knowledge. This could include information about the software and systems, as well as information obtained from observing the behavior of malware samples captured and detonated in honeypots. We describe how we can transfer this knowledge into forms that the RL models can directly use for decision-making purposes.  more » « less
Award ID(s):
2114892
PAR ID:
10416957
Author(s) / Creator(s):
; ;
Editor(s):
Martin, A; Hinkelmann, K; Fill, H.-G.; Gerber, A.; Lenat, D.; Stolle, R.; van Harmelen, F.
Date Published:
Journal Name:
Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building a skilled cybersecurity workforce is paramount to building a safer digital world. However, the diverse skill set, constantly emerging vulnerabilities, and deployment of new cyber threats make learning cybersecurity challenging. Traditional education methods struggle to cope with cybersecurity's rapidly evolving landscape and keep students engaged and motivated. Different studies on students' behaviors show that an interactive mode of education by engaging through a question-answering system or dialoguing is one of the most effective learning methodologies. There is a strong need to create advanced AI-enabled education tools to promote interactive learning in cybersecurity. Unfortunately, there are no publicly available standard question-answer datasets to build such systems for students and novice learners to learn cybersecurity concepts, tools, and techniques. The education course material and online question banks are unstructured and need to be validated and updated by domain experts, which is tedious when done manually. In this paper, we propose CyberGen, a novel unification of large language models (LLMs) and knowledge graphs (KG) to generate the questions and answers for cybersecurity automatically. Augmenting the structured knowledge from knowledge graphs in prompts improves factual reasoning and reduces hallucinations in LLMs. We used the knowledge triples from cybersecurity knowledge graphs (AISecKG) to design prompts for ChatGPT and generate questions and answers using different prompting techniques. Our question-answer dataset, CyberQ, contains around 4k pairs of questions and answers. The domain expert manually evaluated the random samples for consistency and correctness. We train the generative model using the CyberQ dataset for question answering task. 
    more » « less
  2. As cyber threats grow in both frequency and sophistication, traditional cybersecurity measures struggle to keep pace with evolving attack methods. Artificial Intelligence (AI) has emerged as a powerful tool for enhancing threat detection, prevention, and response. AI-driven security systems offer the ability to analyze vast amounts of data in real-time, recognize subtle patterns indicative of cyber threats, and adapt to new attack strategies more efficiently than conventional approaches. However, despite AI’s potential, challenges remain regarding its effectiveness, ethical implications, and risks of adversarial manipulation. This research investigates the strengths and limitations of AI-driven cybersecurity by comparing AI-based security tools with traditional methods, identifying key advantages and vulnerabilities, and exploring ethical considerations. Additionally, a survey of cybersecurity professionals was conducted to assess expert opinions on AI’s role, effectiveness, and potential risks. By combining these insights with experimental testing and a comprehensive review of existing literature, this study provides a nuanced understanding of AI’s impact on cybersecurity and offers recommendations for optimizing its integration into modern security infrastructures. 
    more » « less
  3. Cyber Threat Intelligence (CTI) is information describing threat vectors, vulnerabilities, and attacks and is often used as training data for AI-based cyber defense systems such as Cybersecurity Knowledge Graphs (CKG). There is a strong need to develop community-accessible datasets to train existing AI-based cybersecurity pipelines to efficiently and accurately extract meaningful insights from CTI. We have created an initial unstructured CTI corpus from a variety of open sources that we are using to train and test cybersecurity entity models using the spaCy framework and exploring self-learning methods to automatically recognize cybersecurity entities. We also describe methods to apply cybersecurity domain entity linking with existing world knowledge from Wikidata. Our future work will survey and test spaCy NLP tools, and create methods for continuous integration of new information extracted from text. 
    more » « less
  4. Cyber defense exercises are an important avenue to understand the technical capacity of organizations when faced with cyber-threats. Information derived from these exercises often leads to finding unseen methods to exploit vulnerabilities in an organization. These often lead to better defense mechanisms that can counter previously unknown exploits. With recent developments in cyber battle simulation platforms, we can generate a defense exercise environment and train reinforcement learning (RL) based autonomous agents to attack the system described by the simulated environment. In this paper, we describe a two-player game-based RL environment that simultaneously improves the performance of both the attacker and defender agents. We further accelerate the convergence of the RL agents by guiding them with expert knowledge from Cybersecurity Knowledge Graphs on attack and mitigation steps. We have implemented and integrated our proposed approaches into the CyberBattleSim system. 
    more » « less
  5. null (Ed.)
    The implementation of Internet of Things (IoT) devices in medical environments, has introduced a growing list of security vulnerabilities and threats. The lack of an extensible big data resource that captures medical device vulnerabilities limits the use of Artificial Intelligence (AI) based cyber defense systems in capturing, detecting, and preventing known and future attacks. We describe a system that generates a repository of Cyber Threat Intelligence (CTI) about various medical devices and their known vulnerabilities from sources such as manufacturer and ICS-CERT vulnerability alerts. We augment the intelligence repository with data sources such as Wikidata and public medical databases. The combined resources are integrated with threat intelligence in our Cybersecurity Knowledge Graph (CKG) from previous research. The augmented graph embeddings are useful in querying relevant information and can help in various AI assisted cybersecurity tasks. Given the integration of multiple resources, we found the augmented CKG produced higher quality graph representations. The augmented CKG produced a 31% increase in the Mean Average Precision (MAP) value, computed over an information retrieval task. 
    more » « less