RationaleTandem‐ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem‐ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes. MethodsHere, we describe the coupling of the separation capabilities of tandem‐trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis. ResultsWe establish the feasibility of dissociating intact proteins by UV irradiation at 213 nm between the two TIMS devices in tTIMS/MS and at pressure conditions compatible with ion mobility spectrometry (2–3 mbar). We validate that the fragments produced by UVPD under these conditions result from a radical‐based mechanism in accordance with prior literature on UVPD. The data suggest stabilization of fragment ions produced from UVPD by collisional cooling due to the elevated pressures used here (“UVnoD2”), which otherwise do not survive to detection. The data account for a sequence coverage for the protein ubiquitin comparable to recent reports, demonstrating the analytical utility of our instrument in mobility‐separating fragment ions produced from UVPD. ConclusionsThe data demonstrate that UVPD carried out at elevated pressures of 2–3 mbar yields extensive fragment ions rich in information about the protein and that their exhaustive analysis requires IMS separation post‐UVPD. Therefore, because UVPD and tTIMS/MS each have been shown to be valuable techniques on their own merit in proteomics, our contribution here underscores the potential of combining tTIMS/MS with UVPD for structural proteomics.
more »
« less
Perspective on the potential of tandem-ion mobility/mass spectrometry methods for structural proteomics applications
Cellular processes are usually carried out collectively by the entirety of all proteins present in a biological cell, i.e., the proteome. Mass spectrometry-based methods have proven particularly successful in identifying and quantifying the constituent proteins of proteomes, including different molecular forms of a protein. Nevertheless, protein sequences alone do not reveal the function or dysfunction of the identified proteins. A straightforward way to assign function or dysfunction to proteins is characterization of their structures and dynamics. However, a method capable to characterize detailed structures of proteins and protein complexes in a large-scale, systematic manner within the context of cellular processes does not yet exist. Here, we discuss the potential of tandem -ion mobility/mass spectrometry (tandem-IM/MS) methods to provide such ability. We highlight the capability of these methods using two case studies on the protein systems ubiquitin and avidin using the tandem-TIMS/MS technology developed in our laboratory and discuss these results in the context of other developments in the broader field of tandem-IM/MS.
more »
« less
- Award ID(s):
- 1654608
- PAR ID:
- 10417033
- Date Published:
- Journal Name:
- Frontiers in Analytical Science
- Volume:
- 3
- ISSN:
- 2673-9283
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation.more » « less
-
Tandem mass spectrometry (MS/MS) is crucial for small-molecule analysis; however, traditional computational methods are limited by incomplete reference libraries and complex data processing. Machine learning (ML) is transforming small-molecule mass spectrometry in three key directions: (a) predicting MS/MS spectra and related physicochemical properties to expand reference libraries, (b) improving spectral matching through automated pattern extraction, and (c) predicting molecular structures of compounds directly from their MS/MS spectra. We review ML approaches for molecular representations [descriptors, simplified molecular-input line-entry (SMILE) strings, and graphs] and MS/MS spectra representations (using binned vectors and peak lists) along with recent advances in spectra prediction, retention time, collision cross sections, and spectral matching. Finally, we discuss ML-integrated workflows for chemical formula identification. By addressing the limitations of current methods for compound identification, these ML approaches can greatly enhance the understanding of biological processes and the development of diagnostic and therapeutic tools.more » « less
-
The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase.more » « less
-
Jacob, S. (Ed.)Protein–protein interactions underlie cellular structure and function. In recent years, a number of methods have been developed for the identification of protein complexes and component proteins involved in the control of various biological pathways. Tandem affinity purification (TAP) coupled with mass spectrometry (MS) is a powerful method enabling the isolation of high-purity native protein complexes under mild conditions by performing two sequential purification steps using two different epitope tags. In this protocol, we describe a TAP-MS methodology for identifying protein-protein interactions present at very low levels in the fungal cell. Using the 6xHis-3xFLAG double tag, we start the affinity purification process for our protein of interest using high-capacity Ni²⁺ columns. This allows for greatly increased sample input compared to antibody-based first-step purification in conventional TAP protocols and provides a large amount of highly concentrated and preliminarily purified protein complexes to be used in a second purification step involving FLAG immunoprecipitation. The second step greatly facilitates the capture of low-level interacting partners under in vivo conditions. Our TAP-MS method has been proven to secure the characterization of low-abundance protein complexes under physiological conditions with high efficiency, specificity, and economy in the filamentous fungus Magnaporthe oryzae and might benefit gene function and proteomics studies in plants and other research fields.more » « less
An official website of the United States government

