- Award ID(s):
- 2120200
- PAR ID:
- 10417151
- Editor(s):
- Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A.
- Date Published:
- Journal Name:
- Advances in Neural Information Processing Systems Proceedings
- Volume:
- 35
- Page Range / eLocation ID:
- 19152-19164
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Most of existing work on fairness assumes available demographic information in the training set. In practice, due to legal or privacy concerns, when demographic information is not available in the training set, it is crucial to find alternative objectives to ensure fairness. Existing work on fairness without demographics follows Rawlsian Max-Min fairness objectives. However, such constraints could be too strict to improve group fairness, and could lead to a great decrease in accuracy. In light of these limitations, in this paper, we propose to solve the problem from a new perspective, i.e., through knowledge distillation. Our method uses soft label from an overfitted teacher model as an alternative, and we show from preliminary experiments that soft labelling is beneficial for improving fairness. We analyze theoretically the fairness of our method, and we show that our method can be treated as an error-based reweighing. Experimental results on three datasets show that our method outperforms state-of-the-art alternatives, with notable improvements in group fairness and with relatively small decrease in accuracy.more » « less
-
Link prediction has been widely applied in social network analysis. Despite its importance, link prediction algorithms can be biased by disfavoring the links between individuals in particular demographic groups. In this paper, we study one particular type of bias, namely, the bias in predicting inter-group links (i.e., links across different demographic groups). First, we formalize the definition of bias in link prediction by providing quantitative measurements of accuracy disparity, which measures the difference in prediction accuracy of inter-group and intra-group links. Second, we unveil the existence of bias in six existing state-of-the-art link prediction algorithms through extensive empirical studies over real world datasets. Third, we identify the imbalanced density across intra-group and inter-group links in training graphs as one of the underlying causes of bias in link prediction. Based on the identified cause, fourth, we design a pre-processing bias mitigation method named FairLP to modify the training graph, aiming to balance the distribution of intra-group and inter-group links while preserving the network characteristics of the graph. FairLP is model-agnostic and thus is compatible with any existing link prediction algorithm. Our experimental results on real-world social network graphs demonstrate that FairLP achieves better trade-off between fairness and prediction accuracy than the existing fairness-enhancing link prediction methods.more » « less
-
Koyejo, S. ; Mohamed, S. ; Agarwal, A. ; Belgrave, D. ; Cho, K. ; Oh, A. (Ed.)Fairness has become an important topic in machine learning. Generally, most literature on fairness assumes that the sensitive information, such as gender or race, is present in the training set, and uses this information to mitigate bias. However, due to practical concerns like privacy and regulation, applications of these methods are restricted. Also, although much of the literature studies supervised learning, in many real-world scenarios, we want to utilize the large unlabelled dataset to improve the model's accuracy. Can we improve fair classification without sensitive information and without labels? To tackle the problem, in this paper, we propose a novel reweighing-based contrastive learning method. The goal of our method is to learn a generally fair representation without observing sensitive attributes.Our method assigns weights to training samples per iteration based on their gradient directions relative to the validation samples such that the average top-k validation loss is minimized. Compared with past fairness methods without demographics, our method is built on fully unsupervised training data and requires only a small labelled validation set. We provide rigorous theoretical proof of the convergence of our model. Experimental results show that our proposed method achieves better or comparable performance than state-of-the-art methods on three datasets in terms of accuracy and several fairness metrics.more » « less
-
Fairness has become an important topic in machine learning. Generally, most literature on fairness assumes that the sensitive information, such as gender or race, is present in the training set, and uses this information to mitigate bias. However, due to practical concerns like privacy and regulation, applications of these methods are restricted. Also, although much of the literature studies supervised learning, in many real-world scenarios, we want to utilize the large unlabelled dataset to improve the model's accuracy. Can we improve fair classification without sensitive information and without labels? To tackle the problem, in this paper, we propose a novel reweighing-based contrastive learning method. The goal of our method is to learn a generally fair representation without observing sensitive attributes.Our method assigns weights to training samples per iteration based on their gradient directions relative to the validation samples such that the average top-k validation loss is minimized. Compared with past fairness methods without demographics, our method is built on fully unsupervised training data and requires only a small labelled validation set. We provide rigorous theoretical proof of the convergence of our model. Experimental results show that our proposed method achieves better or comparable performance than state-of-the-art methods on three datasets in terms of accuracy and several fairness metrics.more » « less
-
Making fair decisions is crucial to ethically implementing machine learning algorithms in social settings. In this work, we consider the celebrated definition of counterfactual fairness. We begin by showing that an algorithm which satisfies counterfactual fairness also satisfies demographic parity, a far simpler fairness constraint. Similarly, we show that all algorithms satisfying demographic parity can be trivially modified to satisfy counterfactual fairness. Together, our results indicate that counterfactual fairness is basically equivalent to demographic parity, which has important implications for the growing body of work on counterfactual fairness. We then validate our theoretical findings empirically, analyzing three existing algorithms for counterfactual fairness against three simple benchmarks. We find that two simple benchmark algorithms outperform all three existing algorithms---in terms of fairness, accuracy, and efficiency---on several data sets. Our analysis leads us to formalize a concrete fairness goal: to preserve the order of individuals within protected groups. We believe transparency around the ordering of individuals within protected groups makes fair algorithms more trustworthy. By design, the two simple benchmark algorithms satisfy this goal while the existing algorithms do not.