skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The complete mitochondrial genome of the pink shrimp Farfantepenaeus duorarum (Burkenroad, 1939) (Decapoda: Dendrobranchiata: Penaeidae)
Abstract Farfantepenaeus duorarum (Burkenroad, 1939) is a commercially harvested decapod shrimp that ranges from the eastern coast of the United States, through the Gulf of Mexico, and as far south as Isla Mujeres, Mexico. We report for the first time the complete mitochondrial genome of F. duorarum. The mitochondrial genome is 15,971 base pairs in length and is comprised of 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. An intergenic space 982 bp in length located between the rrnS (12S) and trnI (Isoleucine) genes is presumed to be the D-loop. The mitochondrial gene order in F. duorarum is identical to that reported for congeners. To assess selection pressures within the mitochondrial genome, KA/KS ratios were calculated for all PCGs, and show values < 1, indicating that all genes are evolving under purifying selection. This work contributes one more mitochondrial genome to the penaeid shrimps, an economically targeted group.  more » « less
Award ID(s):
2111661
PAR ID:
10417170
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Crustacean Biology
Volume:
42
Issue:
1
ISSN:
0278-0372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dunning_Hotopp, Julie C (Ed.)
    ABSTRACT We present the complete mitochondrial genome ofCarausius morosusfrom Salinas, CA. The mitochondrial genome ofC. morosusis circular, AT rich (78.1%), and 16,671 bp in length. It consists of 13 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes and is identical in gene content toCarausiussp. 
    more » « less
  2. null (Ed.)
    Abstract Cultivated strawberry ( Fragaria × ananassa ) is an important fruit crop species whose fruits are enjoyed by many worldwide. An octoploid of hybrid origin, the complex genome of this species was recently sequenced, serving as a key reference genome for cultivated strawberry and related species of the Rosaceae family. The current annotation of the F. ananassa genome mainly relies on ab initio predictions and, to a lesser extent, transcriptome data. Here, we present the structure and functional reannotation of the F. ananassa genome based on one PacBio full-length RNA library and ninety-two Illumina RNA-Seq libraries. This improved annotation of the F. ananassa genome, v1.0.a2, comprises a total of 108,447 gene models, with 97.85% complete BUSCOs. The models of 19,174 genes were modified, 360 new genes were identified, and 11,044 genes were found to have alternatively spliced isoforms. Additionally, we constructed a strawberry genome database (SGD) for strawberry gene homolog searching and annotation downloading. Finally, the transcriptome of the receptacles and achenes of F. ananassa at four developmental stages were reanalyzed and qualified, and the expression profiles of all the genes in this annotation are also provided. Together, this study provides an updated annotation of the F. ananassa genome, which will facilitate genomic analyses across the Rosaceae family and gene functional studies in cultivated strawberry. 
    more » « less
  3. Abstract Mitochondrial functions are intimately reliant on proteins and RNAs encoded in both the nuclear and mitochondrial genomes, leading to inter‐genomic coevolution within taxa. Hybridization can break apart coevolved mitonuclear genotypes, resulting in decreased mitochondrial performance and reduced fitness. This hybrid breakdown is an important component of outbreeding depression and early‐stage reproductive isolation. However, the mechanisms contributing to mitonuclear interactions remain poorly resolved. Here, we scored variation in developmental rate (a proxy for fitness) among reciprocal F2interpopulation hybrids of the intertidal copepodTigriopus californicusand used RNA sequencing to assess differences in gene expression between fast‐ and slow‐developing hybrids. In total, differences in expression associated with developmental rate were detected for 2925 genes, whereas only 135 genes were differentially expressed as a result of differences in mitochondrial genotype. Upregulated expression in fast developers was enriched for genes involved in chitin‐based cuticle development, oxidation–reduction processes, hydrogen peroxide catabolic processes and mitochondrial respiratory chain complex I. In contrast, upregulation in slow developers was enriched for DNA replication, cell division, DNA damage and DNA repair. Eighty‐four nuclear‐encoded mitochondrial genes were differentially expressed between fast‐ and slow‐developing copepods, including 12 subunits of the electron transport system (ETS) which all had higher expression in fast developers than in slow developers. Nine of these genes were subunits of ETS complex I. Our results emphasize the major roles that mitonuclear interactions within the ETS, particularly in complex I, play in hybrid breakdown, and resolve strong candidate genes for involvement in mitonuclear interactions. 
    more » « less
  4. null (Ed.)
    Most animals have a conserved mitochondrial genome structure composed of a single chromosome. However, some organisms have their mitochondrial genes separated on several smaller circular or linear chromosomes. Highly fragmented circular chromosomes (“minicircles”) are especially prevalent in parasitic lice (Insecta: Phthiraptera), with 16 species known to have between nine and 20 mitochondrial minicircles per genome. All of these species belong to the same clade (mammalian lice), suggesting a single origin of drastic fragmentation. Nevertheless, other work indicates a lesser degree of fragmentation (2–3 chromosomes/genome) is present in some avian feather lice (Ischnocera: Philopteridae). In this study, we tested for minicircles in four species of the feather louse genus Columbicola (Philopteridae). Using whole genome shotgun sequence data, we applied three different bioinformatic approaches for assembling the Columbicola mitochondrial genome. We further confirmed these approaches by assembling the mitochondrial genome of Pediculus humanus from shotgun sequencing reads, a species known to have minicircles. Columbicola spp. genomes are highly fragmented into 15–17 minicircles between ∼1,100 and ∼3,100 bp in length, with 1–4 genes per minicircle. Subsequent annotation of the minicircles indicated that tRNA arrangements of minicircles varied substantially between species. These mitochondrial minicircles for species of Columbicola represent the first feather lice (Philopteridae) for which minicircles have been found in a full mitochondrial genome assembly. Combined with recent phylogenetic studies of parasitic lice, our results provide strong evidence that highly fragmented mitochondrial genomes, which are otherwise rare across the Tree of Life, evolved multiple times within parasitic lice. 
    more » « less
  5. Mitochondrial and plastid functions depend on coordinated expression of proteins encoded by genomic compartments that have radical differences in copy number of organellar and nuclear genomes. In polyploids, doubling of the nuclear genome may add challenges to maintaining balanced expression of proteins involved in cytonuclear interactions. Here, we use ribo-depleted RNA sequencing (RNA-seq) to analyze transcript abundance for nuclear and organellar genomes in leaf tissue from four different polyploid angiosperms and their close diploid relatives. We find that even though plastid genomes contain <1% of the number of genes in the nuclear genome, they generate the majority (69.9 to 82.3%) of messenger RNA (mRNA) transcripts in the cell. Mitochondrial genes are responsible for a much smaller percentage (1.3 to 3.7%) of the leaf mRNA pool but still produce much higher transcript abundances per gene compared to nuclear genome. Nuclear genes encoding proteins that functionally interact with mitochondrial or plastid gene products exhibit mRNA expression levels that are consistently more than 10-fold lower than their organellar counterparts, indicating an extreme cytonuclear imbalance at the RNA level despite the predominance of equimolar interactions at the protein level. Nevertheless, interacting nuclear and organellar genes show strongly correlated transcript abundances across functional categories, suggesting that the observed mRNA stoichiometric imbalance does not preclude coordination of cytonuclear expression. Finally, we show that nuclear genome doubling does not alter the cytonuclear expression ratios observed in diploid relatives in consistent or systematic ways, indicating that successful polyploid plants are able to compensate for cytonuclear perturbations associated with nuclear genome doubling. 
    more » « less