Abstract Premise Many tropical plants are bat‐pollinated, but these mammals often carry copious, multispecific pollen loads making bat‐pollinated plants susceptible to heterospecific pollen deposition and reproductive interference. We investigated pollen transfer between sympatric bat‐pollinated Burmeistera species and their response to heterospecific pollen deposition from each other. Methods We quantified conspecific and heterospecific pollen deposition for two populations of B. ceratocarpa , a recipient species in heterospecific pollen transfer interactions, that co‐occur with different donor relatives ( B. borjensis and B. glabrata ). We then used a cross‐pollination scheme using pollen mixtures to assess the species' responses to heterospecific pollen deposition in terms of fruit abortion and seed production. Results Burmeistera ceratocarpa received significantly more heterospecific pollen from its relatives at both sites than its own pollen was deposited on its relatives. However, heterospecific pollen deposition only affected seed production by B. borjensis and B. glabrata , but not by B. ceratocarpa , suggesting that early acting post‐pollination barriers buffer the latter against reproductive interference. Crosses between sympatric and allopatric populations suggest that the study species are fully isolated in sympatry, while isolation between allopatric populations is strong but incomplete. Conclusions We did not observe evidence of reproductive interference among our study species, because either heterospecific pollen deposition did not affect their seed production ( B. ceratocarpa ) or they receive heterospecific pollen only rarely ( B. borjensis and B. glabrata ). Frequent heterospecific pollen deposition might favor the evolution of barriers against foreign pollen (as in B. ceratocarpa ) that alleviate the competitive costs of sharing low fidelity pollinators with co‐occurring species.
more »
« less
Temporal shifts in reproductive phenology of cycads: a comparative study in Ceratozamia
The reproductive phenology in plants consists of successive life cycle phases leading to reproductive success. In seed plants, cycads and other dioecious groups have complex reproductive systems, where individuals require synchronizations among two sexes and populations of the same species. Here, we analyzed phenology between populations of three geographically close species in the cycad genus Ceratozamia Brongn. We described the lifespan of pollen and ovulate strobili and their morphological changes throughout ontogeny and evaluated synchrony among reproductive events, focusing on the timing and abundance of the receptivity and open pollen phases. Our results showed that the reproductive timing in the three species was highly synchronous, and that the overlap between the receptivity and open pollen phases could point to gene flow among populations of different species. We identified a correlation between the reproductive patterns and the temperature and precipitation regimes. Pollen and ovulate strobili were produced during the rainy season, whereas the period of synchrony between receptivity and pollen occurred during the dry season. The seed release occurred during the rainy season, which could contribute to keep the seed moist and prevent the embryo from drying out. Finally, we highlight the utility of studies in wild populations for the ecological and evolutionary understanding of phenological patterns in cycads.
more »
« less
- Award ID(s):
- 0629817
- PAR ID:
- 10417362
- Date Published:
- Journal Name:
- Botany
- Volume:
- 100
- Issue:
- 11
- ISSN:
- 1916-2790
- Page Range / eLocation ID:
- 827 to 838
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long‐term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole‐community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind‐dispersed species exhibited significant synchrony at ~6‐month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale‐specificity and time‐localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.more » « less
-
Summary A recent study posited that fire in grasslands promotes persistence of plant species by improving mating opportunities and reproductive outcomes. We devised an investigation to test these predicted mechanisms in two widespread, long‐lived perennials. We expect fire to synchronize flowering, increase mating and boost seed set.We quantified individual flowering phenology and seed set ofLiatris asperaandSolidago speciosafor 3 yr on a preserve in Minnesota, USA. The preserve comprises two management units burned on alternating years, allowing for comparisons between plants in burned and unburned areas within the same year, and plants in the same area across years with and without burns.Fire increased flowering synchrony and increased time between start date and peak flowering. Individuals of both species that initiated flowering later in the season had higher seed set. Fire was associated with substantially higher flowering rates and seed set inL.asperabut notS.speciosa. InL.aspera, greater synchrony was associated with increased mean seed set.Although fire affected flowering phenology in both species, reproductive success improved only in the species in which fire also synchronized among‐year flowering. Our results support the hypothesis that reproduction in some grassland species benefits from fire.more » « less
-
Abstract Premise Morphological and developmental changes as flowers age can impact patterns of mating. At the same time, direct or indirect costs of floral longevity can alter their fitness outcomes. This influence has been less appreciated, particularly with respect to the timing of selfing. We investigated changes in stigma events, autonomous selfing, outcross seed set capacity, and autofertility—a measure representing the potential for reproductive assurance—across floral lifespan in the mixed‐mating biennial Sabatia angularis . Methods We examined stigma morphology and receptivity, autonomous self‐pollen deposition, and seed number and size under autonomous self‐pollination and hand outcross‐pollination for flowers of different ages, from 1 d of female phase until 14 d. We compared autonomous seed production to maximal outcross seed production at each flower age to calculate an index of autofertility. Results The stigmatic lobes begin to untwist 1 d post anthesis. They progressively open, sextend, coil, and increase in receptivity, peaking or saturating at 8–11 d, depending on the measure. Autonomous seed production can occur early, but on average remains low until 6 d, when it doubles. In contrast, outcross seed number and size start out high, then decline precipitously. Consequently, autofertility increases steeply across floral lifespan. Conclusions Changes in stigma morphology and receptivity, timing of autonomous self‐pollen deposition, and floral senescence can interact to influence the relative benefit of autonomous selfing across floral lifespan. Our work highlights the interplay between evolution of floral longevity and the mating system, with implications for the maintenance of mixed mating in S. angularis .more » « less
-
Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success.more » « less
An official website of the United States government

