skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flower morphology as a predictor of pollination mode in a biotic to abiotic pollination continuum
Abstract Background and Aims Wind pollination has evolved repeatedly in flowering plants, yet the identification of a wind pollination syndrome as a set of integrated floral traits can be elusive. Thalictrum (Ranunculaceae) comprises temperate perennial herbs that have transitioned repeatedly from insect to wind pollination while also exhibiting mixed pollination, providing an ideal system to test for evolutionary correlation between floral morphology and pollination mode in a biotic to abiotic continuum. Moreover, the lack of floral organ fusion across this genus additionally allows to test for specialization to pollination vectors in the absence of this feature. Methods We expanded phylogenetic sampling in the genus from a previous study using six chloroplast loci, which allowed us to test whether species cluster into distinct pollination syndromes based on floral morphology. We then used multivariate analyses on floral traits, followed by ancestral state reconstruction of the emerging flower morphotypes and determined whether these traits are evolutionarily correlated under a Bayesian framework with Brownian motion. Key Results Floral traits fell into five distinct clusters, which were reduced to three after considering phylogenetic relatedness, and were largely consistent with flower morphotypes and associated pollination vectors. Multivariate evolutionary analyses found a positive correlation between the lengths of floral reproductive structures (styles, stigmas, filaments, and anthers). Shorter reproductive structures tracked insect-pollinated species and clades in the phylogeny while longer structures tracked wind-pollinated ones, consistent with selective pressures exerted by biotic vs. abiotic pollination vectors, respectively. Conclusions While detectable suites of integrated floral traits across Thalictrum correlated with wind or insect pollination at the extremes of the morphospace distribution, a presumed intermediate, mixed pollination mode morphospace was also detected. Thus, our data broadly support the existence of detectable flower morphotypes from convergent evolution underlying pollination mode evolution in Thalictrum, presumably via different paths from an ancestral mixed pollination state.  more » « less
Award ID(s):
1911539
PAR ID:
10417511
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Annals of Botany
ISSN:
0305-7364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PremiseMultiple transitions from insect to wind pollination are associated with polyploidy and unisexual flowers inThalictrum(Ranunculaceae), yet the underlying genetics remains unknown. We generated a draft genome ofThalictrum thalictroides, a representative of a clade with ancestral floral traits (diploid, hermaphrodite, and insect pollinated) and a model for functional studies. Floral transcriptomes ofT. thalictroidesand of wind‐pollinated, andromonoeciousT. hernandeziiare presented as a resource to facilitate candidate gene discovery in flowers with different sexual and pollination systems. MethodsA draft genome ofT. thalictroidesand two floral transcriptomes ofT. thalictroidesandT. hernandeziiwere obtained from HiSeq 2000 Illumina sequencing and de novo assembly. ResultsTheT. thalictroidesde novo draft genome assembly consisted of 44,860 contigs (N50 = 12,761 bp, 243 Mbp total length) and contained 84.5% conserved embryophyte single‐copy genes. Floral transcriptomes contained representatives of most eukaryotic core genes, and most of their genes formed orthogroups. DiscussionTo validate the utility of these resources, potential candidate genes were identified for the different floral morphologies using stepwise data set comparisons. Single‐copy gene analysis and simple sequence repeat markers were also generated as a resource for population‐level and phylogenetic studies. 
    more » « less
  2. Abstract Baobabs (Adansonia) are a cohesive group of tropical trees with a disjunct distribution in Australia, Madagascar, and continental Africa, and diverse flowers associated with two pollination modes. We used custom-targeted sequence capture in conjunction with new and existing phylogenetic comparative methods to explore the evolution of floral traits and pollination systems while allowing for reticulate evolution. Our analyses suggest that relationships in Adansonia are confounded by reticulation, with network inference methods supporting at least one reticulation event. The best supported hypothesis involves introgression between Adansonia rubrostipa and core Longitubae, both of which are hawkmoth pollinated with yellow/red flowers, but there is also some support for introgression between the African lineage and Malagasy Brevitubae, which are both mammal-pollinated with white flowers. New comparative methods for phylogenetic networks were developed that allow maximum-likelihood inference of ancestral states and were applied to study the apparent homoplasy in floral biology and pollination mode seen in Adansonia. This analysis supports a role for introgressive hybridization in morphological evolution even in a clade with highly divergent and geographically widespread species. Our new comparative methods for discrete traits on species networks are implemented in the software PhyloNetworks. [Comparative methods; Hyb-Seq; introgression; network inference; population trees; reticulate evolution; species tree inference; targeted sequence capture.] 
    more » « less
  3. 1. The evolution of hummingbird pollination is common across angiosperm lineages throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. We examine multiple independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and use our data to address several common explanations for the prevalence of bee to bird pollination transitions. 2. We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well-resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination are associated with high elevation or climatic niche. 3. Traits predicting hummingbird pollination include small flower size, brightly-colored floral bracts, and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climatic niche. 4. Costus presents surprising findings compared to other plant clades. Hummingbird flowers are consistently smaller than bee flowers and primary flower colors are not predictive of pollinators. Moreover, hummingbird pollination shows no association with high elevation, as found in other tropical plants. 
    more » « less
  4. Combinations of correlated floral traits have arisen repeatedly across angiosperms through convergent evolution in response to pollinator selection to optimize reproduction. While some plant groups exhibit very distinct combinations of traits adapted to specific pollinators (so-called pollination syndromes), others do not. Determining how floral traits diverge across clades and whether floral traits show predictable correlations in diverse groups of flowering plants is key to determining the extent to which pollinator-mediated selection drives diversification. The North AmericanSilenesectionPhysolychnisis an ideal group to investigate patterns of floral evolution because it is characterized by the evolution of novel red floral color, extensive floral morphological variation, polyploidy, and exposure to a novel group of pollinators (hummingbirds). We test for correlated patterns of trait evolution that would be consistent with convergent responses to selection in the key floral traits of color and morphology. We also consider both the role of phylogenic distance and geographic overlap in explaining patterns of floral trait variation. Inconsistent with phenotypically divergent pollination syndromes, we find very little clustering of North AmericanSileneinto distinct floral morphospace. We also find little evidence that phylogenetic history or geographic overlap explains patterns of floral diversity in this group. White- and pink-flowering species show extensive phenotypic diversity but are entirely overlapping in morphological variation. However, red-flowering species have much less phenotypic disparity and cluster tightly in floral morphospace. We find that red-flowering species have evolved floral traits that align with a traditional hummingbird syndrome, but that these trait values overlap with several white and pink species as well. Our findings support the hypothesis that convergent evolution does not always proceed through comparative phenotypic divergence, but possibly through sorting of standing ancestral variation. 
    more » « less
  5. Abstract Habitat loss is a major threat to biodiversity, but the effects of habitat fragmentation are less clear. Examining drivers of key demographic processes, such as reproduction, will clarify species‐level responses to fragmentation and broader effects on biodiversity. Yet, understanding how fragmentation affects demography has been challenging due to the many ways landscapes are altered by co‐occurring habitat loss and fragmentation, coupled with the rarity of experiments to disentangle these effects.In a large, replicated fragmentation experiment with open savanna habitats surrounded by pine plantation forests, we tested the effects of inter‐patch connectivity, patch edge‐to‐area ratio, and within‐patch distance from an edge on plant reproductive output. Using five experimentally planted species of restoration interest—three wind‐pollinated grass species and two insect‐pollinated forb species—we measured plant flowering, pollination rate, and seed production.All plant species were more likely to flower and produce more flowering structures farther from the forest edge. Connectivity and distance from an edge, however, had no effect on the pollination rate (regardless of pollination mode). Despite no influence of fragmentation on pollination, plant seed production increased farther from the edge for four of five species, driven by the increase in flower production.Synthesis. Altogether, we demonstrate that plant reproductive output (seed production) is decreased by habitat fragmentation through edge effects on flowering. Our work provides evidence that an important contributor to plant demography, reproductive output, is altered by edge effects in fragmented patches. These species‐level impacts of fragmentation may provide insight into the mechanisms of fragmentation effects on community‐level changes in biodiversity. 
    more » « less