skip to main content


Title: Characterizing seasonal changes in the reproductive activity of Culex mosquitoes throughout the fall, winter, and spring in Ohio
Abstract Background

Culexmosquitoes are the primary vectors of West Nile virus (WNV) across the USA. Understanding when these vectors are active indicates times when WNV transmission can occur. This study determined the proportion of femaleCulexmosquitoes that were in diapause during the fall and winter and when they terminated diapause and began blood feeding in the spring.

Methods

Mosquitoes were collected from parks using various traps and/or aspirated from culverts in Franklin County, Ohio, from October to mid-May from 2019 to 2022.Culexmosquitoes were morphologically identified to species, and the ovaries of females were dissected to determine their diapause and parity statuses.

Results

By early October 2021, roughly 95% ofCulex pipienscollected in culverts were in diapause and 98% ofCx. erraticuswere in diapause. Furthermore, gravid and blood-fedCulex salinarius,Cx. pipiens, andCx. restuanswere collected in late November in 2019 and 2021 in standard mosquito traps. In the winter of 2021, the proportions of non-diapausingCulexdecreased within culverts. The last non-diapausingCx. erraticuswas collected in late December 2021 while the final non-diapausingCx. pipienswas collected in mid-January 2022, both in culverts. Roughly 50% ofCx. pipiensterminated diapause by mid-March 2022, further supported by our collections of gravid females in late March in all 3 years of mosquito collection. In fact, male mosquitoes ofCx. pipiens,Cx. restuans, andCx. territanswere collected by the 1st week of May in 2022, indicating that multiple species ofCulexproduced a second generation that reached adulthood by this time.

Conclusions

We collected blood-fed and gravidCulexfemales into late November in 2 of the 3 years of our collections, indicating that it might be possible for WNV transmission to occur in late fall in temperate climates like Ohio. The persistence of non-diapausingCx. pipiensandCx. erraticusthroughout December has important implications for the winter survival of WNV vectors and our overall understanding of diapause. Finally, determining whenCulexterminate diapause in the spring may allow us to optimize mosquito management programs and reduce the spread of WNV before it is transmitted to humans.

Graphical Abstract 
more » « less
Award ID(s):
1944324
NSF-PAR ID:
10417541
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Parasites & Vectors
Volume:
16
Issue:
1
ISSN:
1756-3305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Mosquitoes in the genusCulexare primary vectors in the US for West Nile virus (WNV) and other arboviruses. Climatic drivers such as temperature have differential effects on species-specific changes in mosquito range, distribution, and abundance, posing challenges for population modeling, disease forecasting, and subsequent public health decisions. Understanding these differences in underlying biological dynamics is crucial in the face of climate change.

    Methods

    We collected empirical data on thermal response for immature development rate, egg viability, oviposition, survival to adulthood, and adult lifespan forCulex pipiens, Cx. quinquefasciatus, Cx. tarsalis, andCx. restuansfrom existing literature according to the PRISMA scoping review guidelines.

    Results

    We observed linear relationships with temperature for development rate and lifespan, and nonlinear relationships for survival and egg viability, with underlying variation between species. Optimal ranges and critical minima and maxima also appeared varied. To illustrate how model output can change with experimental input data from individualCulexspecies, we applied a modified equation for temperature-dependent mosquito type reproduction number for endemic spread of WNV among mosquitoes and observed different effects.

    Conclusions

    Current models often input theoretical parameters estimated from a single vector species; we show the need to implement the real-world heterogeneity in thermal response between species and present a useful data resource for researchers working toward that goal.

    Graphical Abstract 
    more » « less
  2. Abstract Background

    West Nile virus (WNV), primarily vectored by mosquitoes of the genusCulex, is the most important mosquito-borne pathogen in North America, having infected thousands of humans and countless wildlife since its arrival in the USA in 1999. In locations with dedicated mosquito control programs, surveillance methods often rely on frequent testing of mosquitoes collected in a network of gravid traps (GTs) and CO2-baited light traps (LTs). Traps specifically targeting oviposition-seeking (e.g. GTs) and host-seeking (e.g. LTs) mosquitoes are vulnerable to trap bias, and captured specimens are often damaged, making morphological identification difficult.

    Methods

    This study leverages an alternative mosquito collection method, the human landing catch (HLC), as a means to compare sampling of potential WNV vectors to traditional trapping methods. Human collectors exposed one limb for 15 min at crepuscular periods (5:00–8:30 am and 6:00–9:30 pm daily, the time whenCulexspecies are most actively host-seeking) at each of 55 study sites in suburban Chicago, Illinois, for two summers (2018 and 2019).

    Results

    A total of 223 human-seeking mosquitoes were caught by HLC, of which 46 (20.6%) were mosquitoes of genusCulex. Of these 46 collectedCulexspecimens, 34 (73.9%) wereCx. salinarius, a potential WNV vector species not thought to be highly abundant in upper Midwest USA. Per trapping effort, GTs and LTs collected > 7.5-fold the number of individualCulexspecimens than HLC efforts.

    Conclusions

    The less commonly used HLC method provides important insight into the complement of human-biting mosquitoes in a region with consistent WNV epidemics. This study underscores the value of the HLC collection method as a complementary tool for surveillance to aid in WNV vector species characterization. However, given the added risk to the collector, novel mitigation methods or alternative approaches must be explored to incorporate HLC collections safely and strategically into control programs.

    Graphical Abstract 
    more » « less
  3. The Northern house mosquito (Culex pipiens) is a major vector of West Nile virus. To survive harsh conditions in winter adult females of Cx. pipiens enter a state of arrested reproductive development called diapause. Diapause is triggered by the short daylengths of late summer and early fall. The methods by which Cx. pipiens measures daylength are still unknown. However, it is suspected that clock genes, which provide information on daylength, may also regulate diapause. The proteins produced by these genes often cycle in abundance throughout the day in diapausing and nondiapausing insects. Two clock genes suspected to control diapause are cycle (cyc) and Par domain protein1 (Pdp1) as they encode circadian transcription factors that may regulate genes that are involved in diapause. Using Western blotting we measured the relative protein abundance of CYC and PDP1 throughout the day in the whole bodies and the heads of Cx. pipiens reared under either long-day, diapause-averting conditions or short-day, diapause-inducing conditions. We found that in whole bodies there was no significant oscillation of CYC or PDP1 abundance in both long day and short day-reared mosquitoes. In the heads of long day-reared mosquitoes both CYC and PDP1 cycled. In contrast, only PDP1 abundance showed diel differences in abundance in the heads of short day-reared mosquitoes. These data bring us one step closer to understanding the role that CYC and PDP1 may play in regulating diapause and other biological processes. 
    more » « less
  4. Females of the Northern house mosquito, Culex pipiens, enter an overwintering dormancy, or diapause, in response to short day lengths and low environmental temperatures. Diapausing female mosquitoes feed exclusively on sugar-rich products rather than human or animal blood, thereby reducing disease transmission. During diapause, Major Royal Jelly Protein 1 (MRJP1) is upregulated in females of Cx. pipiens. This protein is highly abundant in royal jelly, a substance produced by honey bees (Apis mellifera), that is fed to future queens throughout larval development and stimulates longevity and fecundity. However, the role of MRJP1 in Cx. pipiens is unknown. We investigated how supplementing the diets of both diapausing and nondiapausing females of Cx. pipiens with royal jelly affects gene expression, egg follicle length, fat content, protein content, longevity, and metabolic profile. We found that feeding royal jelly to long day-reared females significantly reduced the egg follicle lengths of females and switched their metabolic profiles to be similar to diapausing females. In contrast, feeding royal jelly to short day-reared females significantly reduced lifespan and switched their metabolic profile to be similar nondiapausing mosquitoes. Moreover, RNAi directed against MRJPI significantly increased egg follicle length of short day-reared females, suggesting that these females averted diapause, although RNAi against MRJP1 also extended the lifespan of short day-reared females. Taken together, our data show that consuming royal jelly reverses the seasonal responses of Cx. pipiens and that these responses are likely mediated in part by MRJP1. 
    more » « less
  5. Abstract

    In temperate regions of the United States, female Anopheles mosquitoes respond to low temperatures and short photoperiods by entering an overwintering dormancy or diapause. Diapause in Anopheles results in reduced frequency of blood-feeding and reproductive arrest, indicating a period when pathogen transmission by these mosquitoes is unlikely. However, it is unclear precisely how late into the fall and how early in the spring these mosquitoes are biting, reproducing, and potentially transmitting pathogens. This is further complicated by the lack of clear markers of diapause in Anopheles (e.g., changes in egg follicle length). Our goal was to characterize the seasonal reproductive activity of female Anopheles in central Ohio, United States and evaluate egg follicle length as an indicator of Anopheles diapause. We used traditional mosquito traps and aspirators to collect Anopheles from urban woodlots and culverts, respectively, from late September 2021 through mid-May 2022 in central Ohio. By measuring their egg follicle length, reproductive status, and blood-feeding status, we found that egg follicle length is not a reliable indicator of Anopheles diapause. We also found that a small proportion of An. punctipennis (Say), An. perplexens (Ludlow), and An. quadrimaculatus (Say) continued to bite and reproduce into early November 2021 and that females of these species terminated reproductive dormancy and began biting by mid-March 2022. This period of reproductive activity extends beyond current mosquito surveillance and control in Ohio. Our findings suggest that within temperate regions of North America, Anopheles have the capacity to transmit pathogens throughout the spring, summer, and fall.

     
    more » « less