The interplay between magnetism and quantum effects has motivated several thermoelectric studies on iron‐telluride yet with little insight on the anomalous features in transport properties near magnetostructural transition temperature (≈70 K). A detailed investigation is carried out on Fe1.1Te by characterizing magnetic, heat capacity, galvanomagnetic, and thermoelectric transport properties to understand the electronic, magnetic, and structural origin of those anomalies. The magnetic susceptibility indicates a bicollinear stripe and short‐range ordering in the antiferromagnetic and paramagnetic domains, respectively. Hall conductivity and transverse magnetoresistance reveal a multicarrier transport impacted by spin fluctuations and magnons. Contributions from phonon‐drag and magnon‐drag are evaluated to understand the origin of the broad peak in antiferromagnetic thermopower. The peak at ≈50 K and the insignificant entropy contribution from the magnonic heat capacity support the phonon‐drag as the origin. The field‐dependent enhancement of thermal conductivity must be associated with field‐dependent spin‐phonon coupling modification. The field‐induced thermopower reduction can be attributed to the suppression of magnons or paramagnons, as evidenced by the magnetic susceptibility data. Above 70 K, the thermal conductivity drops sharply due to the structural change modifying phonon modes. Understanding these properties originated from the spin, and quantum effects are instrumental for designing high‐performance spin‐driven thermoelectrics.
more »
« less
Transient gap generation in BaFe2As2 driven by coherent lattice vibrations
Abstract Iron-based superconductors provide a rich platform to investigate the interplay between unconventional superconductivity, nematicity, and magnetism. The electronic structure and the magnetic properties of iron-based superconductors are highly sensitive to the pnictogen height. Coherent excitation of the A1g phonon by femtosecond laser directly modulates the pnictogen height, which has been used to control the physical properties of iron-based superconductors. Previous studies show that the driven A1g phonon resulted in a transient increase of the pnictogen height in BaFe2As2, favoring an enhanced Fe magnetic moment. However, there are no direct observations on either the enhanced Fe magnetic moments or the enhanced spin-density wave (SDW) gap. Here, we use time-resolved broadband terahertz spectroscopy to investigate the dynamics of BaFe2As2 in the A1g phonon-driven state. Below the SDW transition temperature, we observe a transient gap generation at early-time delays. A similar transient feature is observed in the normal state up to room temperature.
more »
« less
- Award ID(s):
- 1944957
- PAR ID:
- 10417546
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 2
- Issue:
- 6
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuationsAbstract The origin of the pseudogap behavior, found in many high-Tcsuperconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formation but suppresses superconductivity. Employing quantum Monte Carlo simulations of a model of itinerant fermions coupled to ferromagnetic spin fluctuations, represented by a quantum rotor, we report numerical evidence of pseudogap behavior, emerging from pairing fluctuations in a quantum-critical non-Fermi liquid. Specifically, we observe enhanced pairing fluctuations and a partial gap opening in the fermionic spectrum. However, the system remains non-superconducting until reaching a much lower temperature. In the pseudogap regime the system displays a “gap-filling rather than “gap-closing behavior, similar to the one observed in cuprate superconductors. Our results present direct evidence of the pseudogap state, driven by superconducting fluctuations.more » « less
-
Femtosecond photoexcitation of Ba(Fe0.92Co0.08)2As2superconductors reveals distinct dynamics of laser fluence-dependent ultrafast processes. The modified two-temperature model shows the complex interplay between thermalization time constants, electron-phonon coupling parameters, and level of optical excitation.more » « less
-
Abstract Iron oxide nanoparticles (IONPs) are widely used for biomedical applications due to their unique magnetic properties and biocompatibility. However, the controlled synthesis of IONPs with tunable particle sizes and crystallite/grain sizes to achieve desired magnetic functionalities across single‐domain and multi‐domain size ranges remains an important challenge. Here, a facile synthetic method is used to produce iron oxide nanospheres (IONSs) with controllable size and crystallinity for magnetic tunability. First, highly crystalline Fe3O4IONSs (crystallite sizes above 24 nm) having an average diameter of 50 to 400 nm are synthesized with enhanced ferrimagnetic properties. The magnetic properties of these highly crystalline IONSs are comparable to those of their nanocube counterparts, which typically possess superior magnetic properties. Second, the crystallite size can be widely tuned from 37 to 10 nm while maintaining the overall particle diameter, thereby allowing precise manipulation from the ferrimagnetic to the superparamagnetic state. In addition, demonstrations of reaction scale‐up and the proposed growth mechanism of the IONSs are presented. This study highlights the pivotal role of crystal size in controlling the magnetic properties of IONSs and offers a viable means to produce IONSs with magnetic properties desirable for wider applications in sensors, electronics, energy, environmental remediation, and biomedicine.more » « less
-
The magnetocaloric effect (MCE) in iron (Fe) nanoparticles incorporated within a titanium nitride (TiN) thin-film matrix grown using pulsed laser deposition (PLD) is investigated in this study. The study demonstrates the ability to control the entropy change across the magnetic phase transition by varying the size of the Fe nanoparticles. The structural characterization carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning transmission electron (TEM) showed that TiN films are (111) textured, while the Fe-particles are mostly spherical in shapes, are single-crystalline, and have a coherent structure with the surrounding TiN thin-film matrix. The TiN thin-film matrix was chosen as a spacer layer since it is nonmagnetic, is highly corrosion-resistive, and can serve as an excellent conduit for extracting heat due to its high thermal conductivity (11 W/m K). The magnetic properties of Fe–TiN systems were investigated using a superconducting quantum interference device (SQUID) magnetometer. In-plane magnetic fields were applied to record magnetization versus field (M–H) and magnetization versus temperature (M–T) curves. The results showed that the Fe–TiN heterostructure system exhibits a substantial isothermal entropy change (ΔS) over a wide temperature range, encompassing room temperature to the blocking temperature of the Fe nanoparticles. Using Maxwell’s relation and analyzing magnetization–temperature data under different magnetic fields, quantitative insights into the isothermal entropy change (ΔS) and magnetocaloric effect (MCE) were obtained for the Fe–TiN heterostructure system. The study points out a considerable negative change in ΔS that reaches up to 0.2 J/kg K at 0.2 T and 300 K for the samples with a nanoparticle size on the order of 7 nm. Comparative analysis revealed that Fe nanoparticle samples demonstrate higher refrigeration capacity (RC) in comparison to Fe thin-film multilayer samples, with the RC increasing as the Fe particle size decreases. These findings provide valuable insights into the potential application of Fe–TiN heterostructures in solid-state cooling technologies, highlighting their enhanced magnetocaloric properties.more » « less
An official website of the United States government
