skip to main content

Title: WIP: Faculty Developers’ perceptions of Engineering Instructional Faculty engagement in instructional professional development at HSIs
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work-in-progress paper details preliminary results from a qualitative study exploring faculty developers’ interactions with and perceptions of engineering instructional faculty (EIF) at Hispanic-Serving Institutions (HSIs). One potential resource for supporting EIF’s educational innovation efforts is their institutions’ center for teaching and learning (CTL). Through CTLs, and similarly named offices, faculty developers provide EIF and other faculty with professional development opportunities, such as pedagogy workshops, consultations, and seminars. By engaging in services provided by faculty developers, EIF can draw on new ideas, energy, and perspectives for instruction that they can incorporate into their beliefs and practices. This is particularly relevant at HSIs, which play a crucial role in enhancing the education of Latinx engineering students. This study aims to understand HSI faculty developers’ perceptions of EIF’s motivation to participate in professional development programming around instruction. Leveraging the self-determination theory of motivation, our preliminary results suggest that faculty developers recognize how extrinsic and intrinsic factors play an important role in EIF’s decisions to engage in instructional development programming. Based on our preliminary results, we encourage the faculty development community to leverage the identity of EIF as problem-solving engineers, identify and correct misconceptions about the role of faculty developers, and be intentional about how their programming responds to the factors intrinsically and extrinsically motivating EIF. 
    more » « less
  2. null (Ed.)
    In answer to calls for research about professional change, this study addressed the question: What is involved in college science faculty readiness for change in instructional practice? The setting was a professional development experience in oceanography/marine science and paleoclimatology among 32 faculty from 2- and 4-year colleges. Ten of the 32 participated in interviews, and all provided survey responses and documents used in the study. Cycles of inductive analysis generated three example case stories to illustrate a new model for exploring faculty readiness for change in teaching. The model blends results from the health sciences on readiness for behavioral change with research on the personal, external, professional, and consequence domains of a professional change environment. The blended model attends to how an instructor draws on the domains to (a) see an instructional challenge as requiring intentional action to be resolved; (b) notice new significance (for the instructor) in some aspect of instructional practice; (c) feel able to manage instructional stressors/challenges; (d) have commitment to initiate/sustain change; and (e) perceive adequate support in undertaking change. Profiles of instructional readiness for change are represented by composite cases named Lee, Pat, and Chris. In the case of Lee, factor (c) drove change efforts; for Pat, factors (a) and (b) were in the forefront; and for Chris it was factors (d) and (e). The three cases are valuable both as sketches of the blended model in use and as touchstones for future research and development related to postsecondary faculty professional learning. 
    more » « less
  3. Dalby, Andrew R. (Ed.)
    Traditional teaching practices in undergraduate science, technology, engineering, and mathematics (STEM) courses have failed to support student success, causing many students to leave STEM fields and disproportionately affecting women and students of color. Although much is known about effective STEM teaching practices, many faculty continue to adhere to traditional methods, such as lecture. In this study, we investigated the factors that affect STEM faculty members’ instructional decisions about evidence-based instructional practices (EBIPs). We performed a qualitative analysis of semi-structured interviews with faculty members from the Colleges of Physical and Mathematical Sciences, Life Sciences, and Engineering who took part in a professional development program to support the use of EBIPs by STEM faculty at the university. We used an ecological model to guide our investigation and frame the results. Faculty identified a variety of personal, social, and contextual factors that influenced their instructional decision-making. Personal factors included attitudes, beliefs, and self-efficacy. Social factors included the influence of students, colleagues, and administration. Contextual factors included resources, time, and student characteristics. These factors interact with each other in meaningful ways that highlight the hyper-local social contexts that exist within departments and sub-department cultures, the importance of positive feedback from students and colleagues when implementing EBIPs, and the need for support from the administration for faculty who are in the process of changing their teaching. 
    more » « less