Abstract Small organic molecules absorbing and emitting in the shortwave infrared (SWIR, 1000–2000 nm) region are desirable for biological imaging applications due to low auto‐fluorescence, reduce photon scattering, and good tissue penetration depth of photons which allows forin vivoimaging with high resolution and sensitivity. Si‐substituted xanthene‐based fluorophores with indolizine donors have demonstrated some of the longest wavelengths of absorption and emission from organic dyes. This work seeks to compare an indolizine heterocyclic nitrogen with dimethyl aniline nitrogen donors on otherwise identical Si‐substituted xanthene fluorophoresviaoptical spectroscopy, computational chemistry and electrochemistry. Three donors are compared including an indolizine donor, a ubiquitous dimethyl aniline donor, and a vinyl dimethyl aniline group that keeps the number of π‐bonds consistent with indolizine. Significantly higher quantum yields and molar absorptivity are observed in these studies for a dimethylamine‐based donor relative to a simple indolizine donor absorbing and emitting at similar wavelengths (~1312 nm emission). Substantially longer wavelengths are obtainable by appending aniline‐based groups to the indolizine donor (~1700 nm) indicating longer wavelengths can be accessed with indolizine donors while stronger emitters can be accessed with anilines in place of indolizine.
more »
« less
Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes
Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700–1000 nm) and shortwave infrared (SWIR, 1000–1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR.
more »
« less
- Award ID(s):
- 1757220
- PAR ID:
- 10417793
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 28
- Issue:
- 3
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 1287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The design of bright, high quantum yield (QY) materials in the near‐infrared (NIR) spectral region in water remains a significant challenge. A series of cyanine and squaraine dyes varying water solubilizing groups and heterocycles are studied to probe the interactions of these groups with albumin in water. Unprecedented, ′ultra‐bright′ emission in water is observed for a sulfonate indolizine squaraine dye (61.1 % QY) and a sulfonate indolizine cyanine dye (46.7 % QY) at NIR wavelengths of >700 nm and >800 nm, respectively. The dyes presented herein have a lower limit of detection than the most sensitive dyes known in the NIR region for albumin detection by at least an order of magnitude, which enables more sensitive diagnostic testing. Additionally, biotinylated human serum albumin complexed with the dyes reported herein was observed to function as an immunohistochemical reagent enabling high resolution imaging of cellular α‐tubulin at low dye concentrations.more » « less
-
Near-infrared emissive materials with tunable Stokes shifts and solid-state emissions are needed for several active research areas and applications. To aid in addressing this need, a series of indolizine-cyanine compounds varying only the anions based on size, dipole, and hydrophilicity were prepared. The effect of the non-covalently bound anions on the absorption and emission properties of identical π-system indolizine-cyanine compounds were measured in solution and as thin films. Interestingly, the anion choice has a significant influence on the Stokes shift and molar absorptivities of the dyes in solution. In the solid-state, the anion choice was found to have an effect on the formation of aggregate states with higher energy absorptions than the parent monomer compound. The dyes were found to be emissive in the NIR region, with emissions peaking at near 900 nm for specific solvent and anion selections.more » « less
-
Abstract Changes in the viscosity of intracellular microenvironments may indicate the onset of diseases like diabetes, blood‐based illnesses, hypertension, and Alzheimer's. To date, monitoring viscosity changes in the intracellular environment remains a challenge with prior work focusing primarily on visible light‐absorbing viscosity sensing fluorophores. Herein, a series of near‐infrared (NIR, 700–1000 nm) absorbing and emitting indolizine squaraine fluorophores (1PhSQ,2PhSQ,SO3SQ,1DMASQ,7DMASQ, and1,7DMASQ) are synthesized and studied for NIR viscosity sensitivity.2PhSQexhibits a very high slope in its Forster‐Hoffmann plot at 0.75 which indicates this dye is a potent viscosity sensor. The properties of the squaraine fluorophores are studied computationallyviadensity functional theory (DFT) and time‐dependent (TD)‐DFT. Experimentally, both steady‐state and time‐resolved emission spectroscopy, absorption spectroscopy, and electrochemical characterization are conducted on the dyes. Precise photophysical tuning is observed within the series with emission maxima wavelengths as long as 881 nm for1,7DMASQand fluorescence quantum yields as high as 39.5 and 72.0 % for1PhSQin DCM and THF, respectively. The high tunability of this molecular scaffold renders indolizine squaraine fluorophores excellent prospects as viscosity‐sensitive biological imaging agents with2PhSQgiving a dramatically higher fluorescence quantum yield (from 0.3 to 37.1 %) as viscosity increases.more » « less
-
A series of 1,3,5,7-tetraphenyl-aza-BODIPY dyes functionalized with electron-donating or withdrawing groups at the para-positions of the phenyl rings on either the 1,7- or 3,5-positions were synthesized and characterized. The electron-donating group selected was –NH2, while the electron-withdrawing groups spanned a range of strengths, from strong (-NO2) to moderate (-NH3+) and mild (-Ndouble bondCdouble bondS). The structural modifications were strategically implemented to investigate their impact on the dyes photophysical properties. Spectroscopic studies revealed that these dyes exhibit intense absorption and emission in the near-infrared (NIR) region (678–855 nm). The photophysical properties, including molar absorptivity, fluorescence quantum yield, and Stokes shift were found to depend significantly on both the electronic nature (donating/withdrawing) and positioning (1,7- vs. 3,5-) of the substituents. Complementary computational studies provided insights into the electronic structures and excited-state dynamics, corroborating experimental observations. Time-dependent density functional theory (TD-DFT) calculations revealed that the electron density distribution and the frontier orbitals’ energies and shapes were significantly influenced by the electronic effects of the substituent groups. This study underscores the tunability of aza-BODIPY dyes through rational molecular design, enabling precise control over their optical properties for tailored NIR applications.more » « less
An official website of the United States government

