skip to main content


Title: Function and evolution of the aquaporin IsAQP1 in the Lyme disease vector Ixodes scapularis
Abstract

Ticks are important vectors of pathogenic viruses, bacteria, and protozoans to humans, wildlife, and domestic animals. Due to their life cycles, ticks face significant challenges related to water homeostasis. When blood‐feeding, they must excrete water and ions, but when off‐host (for stretches lasting several months), they must conserve water to avoid desiccation. Aquaporins (AQPs), a family of membrane‐bound water channels, are key players in osmoregulation in many animals but remain poorly characterized in ticks. Here, we bioinformatically identified AQP‐like genes from the deer tickIxodes scapularisand used phylogenetic approaches to map the evolution of the aquaporin gene family in arthropods. Most arachnid AQP‐like sequences (including those ofI. scapularis) formed a monophyletic group clustered within aquaglycerolporins (GLPs) from bacteria to vertebrates. This gene family is absent from insects, revealing divergent evolutionary paths for AQPs in different hematophagous arthropods. Next, we sequenced the full‐length cDNA ofI. scapularisaquaporin 1 (IsAQP1) and expressed it heterologously inXenopusoocytes to functionally characterize its permeability to water and solutes. Additionally, we examinedIsAQP1expression across different life stages and adult female organs. We foundIsAQP1is an efficient water channel with high expression in salivary glands prior to feeding, suggesting it plays a role in osmoregulation before or during blood feeding. Its functional properties are unique: unlike most GLPs,IsAQP1has low glycerol permeability, and unlike most AQPs, it is insensitive to mercury. Together, our results suggestIsAQP1plays an important role in tick water balance physiology and that it may hold promise as a target of novel vector control efforts.

 
more » « less
Award ID(s):
1645331
NSF-PAR ID:
10428796
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Insect Molecular Biology
Volume:
32
Issue:
4
ISSN:
0962-1075
Page Range / eLocation ID:
p. 329-339
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Ticks are blood-feeding ectoparasites but spend most of their life off-host where they may have to tolerate low winter temperatures. Rapid cold hardening (RCH) is a process commonly used by arthropods, including ticks, to improve survival of acute low temperature exposure. However, little is known about the underlying mechanisms in ticks associated with RCH, cold shock and recovery from these stresses. In the present study, we investigated the extent to which RCH influences gene expression and metabolism during recovery from cold stress in Dermacentor variabilis, the American dog tick, using a combined transcriptomics and metabolomics approach. Following recovery from RCH, 1860 genes were differentially expressed in ticks, whereas only 99 genes responded during recovery to direct cold shock. Recovery from RCH resulted in an upregulation of various pathways associated with ion binding, transport, metabolism and cellular structures seen in the response of other arthropods to cold. The accumulation of various metabolites, including several amino acids and betaine, corresponded to transcriptional shifts in the pathways associated with these molecules, suggesting congruent metabolome and transcriptome changes. Ticks, D. variabilis and Amblyomma maculatum, receiving exogenous betaine and valine demonstrated enhanced cold tolerance, suggesting cryoprotective effects of these metabolites. Overall, many of the responses during recovery from cold shock in ticks were similar to those observed in other arthropods, but several adjustments may be distinct from the responses in other currently examined taxa. 
    more » « less
  2. Rich, Stephen (Ed.)
    Abstract The ability to escape predation modulates predator–prey interactions and represents a crucial aspect of organismal life history, influencing feeding, mating success, and survival. Thanatosis, also known as death feigning or tonic immobility (TI), is taxonomically widespread, but understudied in blood-feeding vectors. Hematophagous arthropods, such as ticks, are unique among animals as their predators (birds, mice, lizards, frogs, and other invertebrates) may also be their source of food. Therefore, the trade-off between predator avoidance and host-seeking may shift as the time since the last bloodmeal increases. Because ticks are slow-moving and unable to fly, or otherwise escape, we predicted that they may use TI to avoid predation, but that TI would be influenced by time since the last bloodmeal (starvation). We therefore aimed to quantify this relationship, examining the effect of starvation, body mass, and ontogeny on TI for two tick species: Dermacentor variabilis (Say) (Acari: Ixodidae) and Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae). As we predicted, the duration and use of TI decreased with time since feeding and emergence across species and life stages. Therefore, ticks may become more aggressive in their search for a bloodmeal as they continue to starve, opting to treat potential predators as hosts, rather than avoiding predation by feigning death. Antipredator behaviors such as TI may influence the intensity and amount of time ticks spend searching for hosts, driving patterns of tick-borne pathogen transmission. This identification and quantification of a novel antipredation strategy add a new component to our understanding of tick life history. 
    more » « less
  3. Abstract

    Ticks are blood-feeding arthropods responsible for the transmission of disease-causing pathogens to a wide range of vertebrate hosts, including livestock and humans. Tick-borne diseases have been implicated in significant economic losses to livestock production, and this threat will increase as these obligate parasites widen their geographical ranges. Similar to other ectotherms, thermal stress due to changing global temperatures has been shown to influence tick survival and distribution. However, studies on the influence of extreme temperatures in ticks have focused on advanced, mobile stages, ignoring immobile stages that cannot move to more favorable microhabitats. In this study, low- and high-temperature regimens were assessed in relation to egg viability for hard tick species—Amblyomma maculatum (Gulf Coast tick), Ixodes scapularis (black-legged tick), Dermacentor variabilis (American dog tick), and Rhipicephalus sanguineus (Brown dog tick). Tick eggs exposed early in development (freshly laid during early embryo development) were significantly more susceptible to thermal stress when compared with those exposed later in development (late embryo development denoted by a fecal spot). Based on our studies, differences in egg hatching success among treatments were greater than in hatching success when comparing species. Lastly, there was evidence of extreme thermal exposure significantly altering the hatching times of tick eggs for specific treatments. These results provide insights into the critical period for tick egg viability in relation to thermal exposure and tick survival associated with stress and climate change.

     
    more » « less
  4. Abstract

    Ticks are obligatorily hematophagous but spend the majority of their lives off host in an unfed state where they must resist starvation between bouts of blood feeding. Survival during these extended off‐host periods is critical to the success of these arthropods as vectors of disease; however, little is known about the underlying physiological and molecular mechanisms of starvation tolerance in ticks. We examined the bioenergetic, transcriptomic and behavioural changes of female American dog ticks,Dermacentor variabilis, throughout starvation (up to nine months post‐bloodmeal). As starvation progressed, ticks utilized glycogen and lipid, and later protein as energy reserves with proteolysis and autophagy facilitating the mobilization of endogenous nutrients. The metabolic rate of the ticks was expectedly low, but showed a slight increase as starvation progressed possibly reflecting the upregulation of several energetically costly processes such as transcription/translation and/or increases in host‐seeking behaviours. Starved ticks had higher activity levels, increased questing behaviour and augmented expression of genes related to chemosensing, immunity and salivary gland proteins. The shifts in gene expression and associated behavioural and physiological processes are critical to allowing these parasites to exploit their ecological niche as extreme sit‐and‐wait parasites. The overall responses of ticks to starvation were similar to other blood‐feeding arthropods, but we identified unique responses that could have epidemiological and ecological significance for ticks as ectoparasites that must be tolerant of sporadic feeding.

     
    more » « less
  5. Abstract

    The blacklegged tick (Ixodes scapularis(Journal of the Academy of Natural Sciences of Philadelphia, 1821,2, 59)) is a vector ofBorrelia burgdorferisensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984,34, 496), the causative bacterial agent of Lyme disease, part of a slow‐moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well‐known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome‐wide markers inI. scapularis, conducted by using 3RAD (triple‐enzyme restriction‐site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters ofI. scapularis. In regions where Lyme disease is increasing in frequency, theI. scapularispopulations genetically group with ticks from historically highly Lyme‐endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome‐scale scaffolds forI. scapularisand are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity ofI. scapularisand where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted byI. scapularis.

     
    more » « less