The self-assembly of amphiphilic molecules in water has led to a wide variety of nanostructures with diverse applications. Many nanostructures are stabilized by strong interactions between monomer units, such as hydrogen bonding and π–π stacking. However, the morphological implications of these strong, anisotropic interactions can be difficult to predict. In this study, we investigate the relationships between molecular flexibility, head group repulsion, and supramolecular geometry in an aramid amphiphile nanostructure that is known to exhibit extensive hydrogen bonding and π–π stacking – features that give rise to their unusual stability. We find by electron microscopy that increasing backbone flexibility disrupts molecular packing into high aspect-ratio nanoribbons, and at the highest degree of flexibility long-range ordering is lost. Even when backbone rigidity favors tight packing, increasing head group charge through pH-modulation leads to intermolecular electrostatic repulsion that also disrupts close packing. Spectroscopic measurements suggest that these changes are accompanied by disruption of π–π stacking but not hydrogen bonding. Backbone rigidity and head group repulsion are thus important design considerations for controlling internal stability and nanostructure curvature in supramolecular assemblies stabilized by π–π stacking interactions. 
                        more » 
                        « less   
                    
                            
                            Construction of a π-stacked supramolecular framework using a triphenylene-cored metallo-organic cage
                        
                    
    
            Supramolecular nanocages with inner cavities have attracted increasing attention due to their fascinating molecular aesthetics and vast number of potential applications. Even though a wide array of discrete supramolecular cages with precisely designed sizes and shapes have been established, the controlled assembly of higher-order supramolecular frameworks from discrete molecular entities still represents a formidable challenge. In this work, a novel metallo-organic cage [Zn12L4] was assembled based on a triphenylene-cored hexapod terpyridine ligand. Synchotron X-ray analysis revealed a pair of enantiomeric cages in the crystal with flexible ligands twisted clockwise or anticlockwise due to steric hindrance in the structure. Interestingly, due to the strong π–π intermolecular interaction between triphenylene units, a controlled hierarchical packing of sphere-like cages in the crystal was established having a sparse packing mode with huge channels of around 3.6 nm diameter. This research sheds light on the design of strong π–π interactions in supramolecular hierarchical packing and materials science. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1757220
- PAR ID:
- 10417800
- Date Published:
- Journal Name:
- Inorganic Chemistry Frontiers
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2052-1553
- Page Range / eLocation ID:
- 621 to 629
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2V−1s1being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.more » « less
- 
            A series of aromatic organic molecules functionalized with different halogen atoms (I/ Br), motion-capable groups (olefin, azo or imine) and molecular length were designed and synthesized. The molecules self-assemble in the solid state through halogen bonding and exhibit molecular packing sustained by either herringbone or face-to-face π-stacking, two common motifs in organic semiconductor molecules. Interestingly, dynamic pedal motion is only achieved in solids with herringbone packing. On average, solids with herringbone packing exhibit larger thermal expansion within the halogen-bonded sheets due to motion occurrence and molecular twisting, whereas molecules with face-to-face π-stacking do not undergo motion or twisting. Thermal expansion along the π-stacked direction is surprisingly similar, but slightly larger for the face-to-face π-stacked solids due to larger changes in π-stacking distances with temperature changes. The results speak to the importance of crystal packing and intermolecular interaction strength when designing aromatic-based solids for organic electronics applications.more » « less
- 
            null (Ed.)The molecular structure of trans -bis(pyridin-3-yl)ethylene ( 3,3′-bpe ), C 12 H 10 N 2 , as determined by single-crystal X-ray diffraction is reported. The molecule self-assembles into two dimensional arrays by a combination of C—H...N hydrogen bonds and edge-to-face C—H... π interactions that stack in a herringbone arrangement perpendicular to the crystallographic c -axis. The supramolecular forces that direct the packing of 3,3′-bpe as well as its packing assembly within the crystal are also compared to those observed within the structures of the other symmetrical isomers trans -1,2-bis( n -pyridyl)ethylene ( n , n ′-bpe , where n = n ′ = 2 or 4).more » « less
- 
            Crystalline porous frameworks, such as covalent organic frameworks (COFs), metal–organic frameworks (MOFs), and hydrogen-bonded organic frameworks (HOFs), have demonstrated exceptional potential in diverse applications, including gas adsorption/separation, catalysis, sensing, electronic devices, etc. However, the building blocks for constructing ordered frameworks are typically limited to multisubstituted aromatic small molecules, and uncontrolled interpenetration has remained a long-standing challenge in the field. Shape-persistent macrocycles and molecular cages have garnered significant attention in supramolecular chemistry and materials science due to their unique structures and novel properties. Using such preporous shape-persistent 2D macrocycles or 3D cages as building blocks to construct extended networks is particularly appealing. This macrocycle-to-framework/cage-to-framework hierarchical assembly approach not only mitigates the issue of interpenetration but also enables the integration of diverse properties in an emergent fashion. Since our demonstration of the first organic cage framework (OCF) in 2011 and the first macrocycle-based ionic COFs (ICOFs) in 2015, substantial advancements have been made over the past decade. In this Account, we will summarize our contributions to the development of crystalline porous frameworks, consisting of shape-persistent macrocycles and molecular cages as preporous building blocks, via hierarchical dynamic covalent assembly. We will begin by reviewing representative design strategies and the synthesis of shape-persistent macrocycles and molecular cages from small molecule-based primary building blocks, emphasizing the critical role of dynamic covalent chemistry (DCvC). Next, we will discuss the further assembly of preporous macrocycle/cage-based secondary building blocks into extended frameworks, followed by an overview of their properties and applications. Finally, we will highlight the current challenges and future directions for this hierarchical assembly approach in the synthesis of crystalline porous frameworks. This Account offers valuable insights into the design and synthesis of functional porous frameworks, contributing to the advancement of this important field.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    