skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zamia multidentata (Cycadales, Zamiaceae), a new arborescent species of Zamia from Acre, Brazil
Zamia multidentata is described and illustrated here as a new species from the Amazon basin, state of Acre, Brazil. The new species shares morphological similarities with the Amazonian species Z. hymenophyllidia, and Z. urep, to which it is compared. The combination of slender (to 6.2 cm) caulescent stems, strongly serrulate elliptic leaflets with long acuminate tips and a pronounced adaxially raised longitudinal crease, as well as seed strobili with long peduncles (15 cm +) and flat megasporophylls distinguish the new species Zamia multidentata from all other known species in the genus.  more » « less
Award ID(s):
2140319
PAR ID:
10417855
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Phytotaxa
Volume:
598
Issue:
1
ISSN:
1179-3155
Page Range / eLocation ID:
21 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zamia magnifica (Zamiaceae), a new species endemic to Sierra Norte, Oaxaca, Mexico, is described. Zamia magnifica is characterized by having a rupicolous habit, pendent leaves bearing leaflets that are densely tomentose and pink to caramel in color when emerging, and broad oblong leaflets that are coriaceous in texture with few non-prominent denticulations and ovulate strobili with short (<4 cm) peduncles. It is compared to Z. furfuracea and Z. meermanii, the Mesoamerican Zamia species to which it shares the closest morphological resemblance. 
    more » « less
  2. Zamia orinoquiensis Calonje, Betancur & A.Lindstr., a new species from the western Orinoquía region of Colombia is described and illustrated. The species is segregated from and compared to Z. muricata Willd., the latter which is morphologically recharacterized, illustrated, and recircumscribed to include populations from tropical dry forest and tropical moist forests in the Lara-Falcón Formation and the Cordillera de la Costa natural regions of Venezuela, as well as the Serranía de Macuira in La Guajira, Colombia. Zamia orinoquiensis is morphologically distinguished from Z. muricata by its leaves bearing fewer, coriaceous (vs. papyraceous) leaflets, eophylls with 2 (vs. 4) leaflets, pollen strobili that are brown to reddish brown (vs. cream to tan) with larger microsporophylls bearing more numerous microsporangia, and ovulate strobili that are dark brown to black (vs. dark olive green to olive brown) at maturity. 
    more » « less
  3. Zamia integrifolia L.f. (Cycadales), a threatened cycad native to Florida, depends on 2 native beetle species for pollination: Rhopalotria slossoni (Chevrolat; Coleoptera: Belidae) and Pharaxanotha floridana (Casey; Coleoptera: Erotylidae). Both insects are brood-site pollina- tion mutualists, known to live and feed within the pollen (male) cone. However, for pollination to occur, beetles must also visit ovulate (fe- male) cones, which have been assumed to offer no benefits to them as food or nurseries. We tested the potential for beetle pollinator use of ovulate cones by performing no-choice behavior and feeding trials for adults of both beetle species on both ovulate cones and pollen cones of Z. integrifolia. Rhopalotria slossoni beetles showed greater survival on ovulate cone tissues despite showing no significant difference in to- tal tissue mass consumed between cone sexes. Conversely, P. floridana consumed more tissue mass from ovulate cone scales yet showed no difference in survivorship on ovulate vs. pollen cone scales. Although neither beetle species is found in large numbers on ovulate cones in the field, our laboratory study suggests that both species could po- tentially benefit from feeding on ovulate cone tissues, questioning the standing hypothesis that Z. integrifolia pollination occurs by deceit. 
    more » « less
  4. null (Ed.)
    Coevolution between plants and insects is thought to be responsible for generating biodiversity. Extensive research has focused largely on antagonistic herbivorous relationships, but mutualistic pollination systems also likely contribute to diversification. Here we describe an example of chemically-mediated mutualistic species interactions affecting trait evolution and lineage diversification. We show that volatile compounds produced by closely related species of Zamia cycads are more strikingly different from each other than are other phenotypic characters, and that two distantly related pollinating weevil species have specialized responses only to volatiles from their specific host Zamia species. Plant transcriptomes show that approximately a fifth of genes related to volatile production are evolving under positive selection, but we find no differences in the relative proportion of genes under positive selection in different categories. The importance of phenotypic divergence coupled with chemical communication for the maintenance of this obligate mutualism highlights chemical signaling as a key mechanism of coevolution between cycads and their weevil pollinators. 
    more » « less
  5. Titanium carbide/reduced graphene oxide (Ti 3 C 2 T z /rGO) gels were prepared by a one-step hydrothermal process. The gels show a highly porous structure with a surface area of ∼224 m 2 g −1 and average pore diameter of ∼3.6 nm. The content of GO and Ti 3 C 2 T z nanosheets in the reaction precursor was varied to yield different microstructures. The supercapacitor performance of Ti 3 C 2 T z /rGO gels varied significantly with composition. Specific capacitance initially increased with increasing Ti 3 C 2 T z content, but at high Ti 3 C 2 T z content gels cannot be formed. Also, the retention of capacitance decreased with increasing Ti 3 C 2 T z content. Ti 3 C 2 T z /rGO gel electrodes exhibit enhanced supercapacitor properties with high potential window (1.5 V) and large specific capacitance (920 F g −1 ) in comparison to pure rGO and Ti 3 C 2 T z . The synergistic effect of EDLC from rGO and redox capacitance from Ti 3 C 2 T z was the reason for the enhanced supercapacitor performance. A symmetric two-electrode supercapacitor cell was constructed with Ti 3 C 2 T z /rGO, which showed very high areal capacitance (158 mF cm −2 ), large energy density (∼31.5 μW h cm −2 corresponding to a power density of ∼370 μW cm −2 ), and long stability (∼93% retention) after 10 000 cycles. 
    more » « less