skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-time GW -BSE investigations on spin-valley exciton dynamics in monolayer transition metal dichalcogenide
We develop an ab initio nonadiabatic molecular dynamics (NAMD) method based on GW plus real-time Bethe-Salpeter equation ( GW + rtBSE-NAMD) for the spin-resolved exciton dynamics. From investigations on MoS 2 , we provide a comprehensive picture of spin-valley exciton dynamics where the electron-phonon (e-ph) scattering, spin-orbit interaction (SOI), and electron-hole (e-h) interactions come into play collectively. In particular, we provide a direct evidence that e-h exchange interaction plays a dominant role in the fast valley depolarization within a few picoseconds, which is in excellent agreement with experiments. Moreover, there are bright-to-dark exciton transitions induced by e-ph scattering and SOI. Our study proves that e-h many-body effects are essential to understand the spin-valley exciton dynamics in transition metal dichalcogenides and the newly developed GW + rtBSE-NAMD method provides a powerful tool for exciton dynamics in extended systems with time, space, momentum, energy, and spin resolution.  more » « less
Award ID(s):
1809085
PAR ID:
10417860
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
10
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose–Einstein condensation, and light-energy harvesting. Anatase TiO2with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe–Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron–phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron–hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright–dark exciton transitions sheds insights into applications of anatase TiO2in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors. 
    more » « less
  2. Abstract We investigate the spin-nonconserving relaxation channel of excitons by their couplings with phonons in two-dimensional transition metal dichalcogenides using ab initio approaches. Combining GW-Bethe–Salpeter equation method and density functional perturbation theory, we calculate the electron–phonon and exciton–phonon coupling matrix elements for the spin-flip scattering in monolayer WSe 2 , and further analyze the microscopic mechanisms influencing these scattering strengths. We find that phonons could produce effective in-plane magnetic fields which flip spin of excitons, giving rise to relaxation channels complimentary to the spin-conserving relaxation. Finally, we calculate temperature-dependent spin-flip exciton–phonon relaxation times. Our method and analysis can be generalized to study other two-dimensional materials and would stimulate experimental measurements of spin-flip exciton relaxation dynamics. 
    more » « less
  3. Understanding, predicting, and ultimately controlling exciton band structure and exciton dynamics are central to diverse chemical and materials problems. Here, we have developed a first-principles method to determine exciton dispersion and exciton–phonon interaction in semiconducting and insulating solids based on time-dependent density functional theory. The first-principles method is formulated in planewave bases and pseudopotentials and can be used to compute exciton band structures, exciton charge density, ionic forces, the non-adiabatic coupling matrix between excitonic states, and the exciton–phonon coupling matrix. Based on the spinor formulation, the method enables self-consistent noncollinear calculations to capture spin-orbital coupling. Hybrid exchange-correlation functionals are incorporated to deal with long-range electron–hole interactions in solids. A sub-Hilbert space approximation is introduced to reduce the computational cost without loss of accuracy. For validations, we have applied the method to compute the exciton band structure and exciton–phonon coupling strength in transition metal dichalcogenide monolayers; both agree very well with the previous GW-Bethe–Salpeter equation and experimental results. This development paves the way for accurate determinations of exciton dynamics in a wide range of solid-state materials. 
    more » « less
  4. null (Ed.)
    Abstract Understanding how photoexcited electron dynamics depend on electron-electron (e-e) and electron-phonon (e-p) interaction strengths is important for many fields, e.g. ultrafast magnetism, photocatalysis, plasmonics, and others. Here, we report simple expressions that capture the interplay of e-e and e-p interactions on electron distribution relaxation times. We observe a dependence of the dynamics on e-e and e-p interaction strengths that is universal to most metals and is also counterintuitive. While only e-p interactions reduce the total energy stored by excited electrons, the time for energy to leave the electronic subsystem also depends on e-e interaction strengths because e-e interactions increase the number of electrons emitting phonons. The effect of e-e interactions on energy-relaxation is largest in metals with strong e-p interactions. Finally, the time high energy electron states remain occupied depends only on the strength of e-e interactions, even if e-p scattering rates are much greater than e-e scattering rates. 
    more » « less
  5. In this article, we review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover transitions. First, we discuss different representations of electronic states employed in the grid-based and direct NAMD simulations. The nature of interstate couplings in different representations is highlighted, with the main focus on nonadiabatic and spin-orbit couplings. Second, we describe three NAMD methods that have been used to simulate spin-crossover dynamics, including trajectory surface hopping, ab initio multiple spawning, and multiconfiguration time-dependent Hartree. Some aspects of employing different electronic structure methods to obtain information about potential energy surfaces and interstate couplings for NAMD simulations are also discussed. Third, representative applications of NAMD to spin crossovers in molecular systems of different sizes and complexities are highlighted. Finally, we pose several fundamental questions related to spin-dependent processes. These questions should be possible to address with future methodological developments in NAMD. 
    more » « less