skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of 4-[4-(Anilinomethyl)-3-phenyl-pyrazol-1-yl] Benzoic Acid Derivatives as Potent Anti-Staphylococci and Anti-Enterococci Agents
From a library of compounds, 11 hit antibacterial agents have been identified as potent anti-Gram-positive bacterial agents. These pyrazole derivatives are active against two groups of pathogens, staphylococci and enterococci, with minimum inhibitory concentration (MIC) values as low as 0.78 μg/mL. These potent compounds showed bactericidal action, and some were effective at inhibiting and eradicating Staphylococcus aureus and Enterococcus faecalis biofilms. Real-time biofilm inhibition by the potent compounds was studied, by using Bioscreen C. These lead compounds were also very potent against S. aureus persisters as compared to controls, gentamycin and vancomycin. In multiple passage studies, bacteria developed little resistance to these compounds (no more than 2 × MIC). The plausible mode of action of the lead compounds is the permeabilization of the cell membrane determined by flow cytometry and protein leakage assays. With the detailed antimicrobial studies, both in planktonic and biofilm contexts, some of these potent compounds have the potential for further antimicrobial drug development.  more » « less
Award ID(s):
2117138
PAR ID:
10417879
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Antibiotics
Volume:
11
Issue:
7
ISSN:
2079-6382
Page Range / eLocation ID:
939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The synthesis and biological activity of several novel nitrothiazole, nitrobenzothiazole, and nitrofuran containing antimicrobial agents for the eradication of biofilm-forming Gram-negative and Gram-positive pathogens is described. Nitazoxanide (NTZ), nitrofurantoin, and furazolidone are commercial antimicrobials which were used as models to show how structural modification improved activity toward planktonic bacteria via minimum inhibitory concentration (MIC) assays and biofilms via minimum biofilm eradication concentration (MBEC) assays. Structure–activity relationship (SAR) studies illustrate the ways in which improvements have been made to the aforementioned antimicrobial agents. It is of particular interest in this regard that the introduction of a chloro substituent at the 5-position of NTZ (analog 1b) resulted in marked activity enhancement, as did the replacement of the 2-acetoxy substituent in the latter compound with a basic amine group (analog 7b). It is also of importance that analog 4a, which is a simple methacrylamide, displayed noteworthy activity against S. epidermidis biofilms. These lead compounds identified to have high activity towards biofilms provide promise as starting points in future pro-drug studies. 
    more » « less
  2. Bacteria subjected to antiseptic or antibiotic stress often develop tolerance, a trait that can lead to permanent resistance. To determine whether photodynamic agents could be used to counter tolerance, we evaluated three non-iron hemin analogs (M-PpIX; M = Al, Ga, In) as targeted photosensitizers for antimicrobial photodynamic inactivation (aPDI) following exposure to sublethal H2O2. Al-PpIX is an active producer of ROS whereas Ga- and In-PpIX are more efficient at generating singlet oxygen. Al- and Ga-PpIX are highly potent aPDI agents against S. aureus and methicillin-resistant strains (MRSA) with antimicrobial activity (3-log reduction in colony-forming units) at nanomolar concentrations. The aPDI activities of Al- and Ga-PpIX against S. aureus were tested in the presence of 1 mM H2O2 added at different stages of growth. Bacteria exposed to H2O2 during log-phase growth were less susceptible to aPDI but bacteria treated with H2O2 in their postgrowth phase exhibited aPDI hypersensitivity, with no detectable colony growth after treatment with 15 nM Ga-PpIX. 
    more » « less
  3. Abstract Group BStreptococcus(GBS) is an encapsulated Gram‐positive bacterial pathogen that causes severe perinatal infections. Human milk oligosaccharides (HMOs) are short‐chain sugars that have recently been shown to possess antimicrobial and anti‐biofilm activity against a variety of bacterial pathogens, including GBS. We have expanded these studies to demonstrate that HMOs can inhibit and dismantle biofilm in both invasive and colonizing strains of GBS. A cohort of 30 diverse strains of GBS were analyzed for susceptibility to HMO‐dependent biofilm inhibition or destruction. HMOs were significantly effective at inhibiting biofilm in capsular‐type‐ and sequence‐type‐specific fashion, with significant efficacy in CpsIb, CpsII, CpsIII, CpsV, and CpsVI strains as well as ST‐1, ST‐12, ST‐19, and ST‐23 strains. Interestingly, CpsIa as well as ST‐7 and ST‐17 were not susceptible to the anti‐biofilm activity of HMOs, underscoring the strain‐specific effects of these important antimicrobial molecules against the perinatal pathogenStreptococcus agalactiae. 
    more » « less
  4. Invasive fungal infections are increasing worldwide due to an expanding number of immunocompromised patients as well as an increase in drug-resistant fungi. While fungal resistance has increased, this resistance has not been accompanied by the development of new antifungals. A common class of antifungal agents that are prescribed are the azoles, which contain either a triazole or an imidazole group. Unfortunately, current azoles, like fluconazole, have been shown to be less effective with the increase in resistant fungal pathogens. Therefore, the development of novel azole antifungal compounds is of urgent need. The objective of this research was to synthesize triazole-containing small molecules with potent antifungal activity. The scaffold of the synthesized compounds contains a triazole moiety and was synthesized via a copper-catalyzed azide-alkyne click reaction (CuAAC) between the appropriate alkyne and azide intermediates. The minimum inhibitory concentrations of these compounds were determined using standard broth microdilution assays against opportunistic bacteria and fungi associated with life-threatening invasive fungal infections. Although the synthesized compounds possessed no antimicrobial activity, these results can be used to further the long-term goal of developing and optimizing lead compounds with potentin vitroantifungal activity. 
    more » « less
  5. Abstract Diosgenin, a hydrolyzed product of phytosteroid saponin, has widely been studied for its medicinal properties. In an effort to find bioactive molecules, 25 novel thiazole‐fused diosgenin molecules have been synthesized by an efficient reaction protocol. The chemistry involves the Oppenauer oxidation followed by double bond isomerization in a one‐pot reaction, epoxidation, and the reaction of urea derivatives with the epoxyketone to synthesize the target compounds. These novel chimeric compounds were tested for their potential antimicrobial and cytotoxic properties. Antimicrobial studies against a panel of Gram‐positive and Gram‐negative led to the discovery of some of these molecules as narrow‐spectrum antimicrobial agents againstBacillus subtilisbacteria. In preliminary cytotoxicity studies, 2‐fluorophenyl derivative (10) inhibited the growth of several cell lines of the NCI‐60 cell line panels including >93 % inhibition of UO‐31 cell line. Furthermore, the hit antibacterial compounds are non‐toxic to human cancer cell lines, and the cytotoxic compound is not active against the bacterial strains, showing the selective therapeutic potential of the chimeric compounds. 
    more » « less