skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dipole-mediated exciton management strategy enabled by reticular chemistry
Selectively blocking undesirable exciton transfer pathways is crucial for utilizing exciton conversion processes that involve participation of multiple chromophores. This is particularly challenging for solid-state systems, where the chromophores are fixed in close proximity. For instance, the low efficiency of solid-state triplet–triplet upconversion calls for inhibiting the parasitic singlet back-transfer without blocking the flow of triplet excitons. Here, we present a reticular chemistry strategy that inhibits the resonance energy transfer of singlet excitons. Within a pillared layer metal–organic framework (MOF), pyrene-based singlet donors are situated perpendicular to porphyrin-based acceptors. High resolution transmission electron microscopy and electron diffraction enable direct visualization of the structural relationship between donor and acceptor (D–A) chromophores within the MOF. Time-resolved photoluminescence measurements reveal that the structural and symmetry features of the MOF reduce the donor-to-acceptor singlet transfer efficiency to less than 36% compared to around 96% in the control sample, where the relative orientation of the donor and acceptor chromophores cannot be controlled.  more » « less
Award ID(s):
2105495
PAR ID:
10417898
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
13
Issue:
36
ISSN:
2041-6520
Page Range / eLocation ID:
10792 to 10797
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermally activated delayed fluorescence (TADF) is the internal conversion of triplet excitons into singlet excitons via reverse intersystem crossing (RISC). It improves the efficiency of OLEDs by enabling the harvesting of nonradiative triplet excitons. Multiple resonance (MR) induced TADF chromophores exhibit an additional advantage of high color purity due to their rigid conformation. However, owing to the strict design rules there is a limited number of known MR-TADF chromophores. For applications in full-color high-resolution OLED displays, it is desirable to extend the variety of available chromophores and their color range. We computationally explore the effect of chemical modification on the properties of the MR-TADF chromophore quinolino[3,2,1-de]acridine-5,9-dione (QAD). QAD derivatives are evaluated based on several metrics: The formation energy is associated with the ease of synthesis; The spatial distribution of the frontier orbitals indicates whether a compound remains an MR-TADF chromophore or turns into a donor-acceptor TADF chromophore; The change of the singlet excitation energy compared to the parent compound corresponds to the change in color; The energy difference between the lowest singlet and triplet states corresponds to the barrier to RISC; The reorganization energy is associated with the color purity. Based on these metrics, QAD-6CN is predicted to be a promising MR-TADF chromophore with a cyan hue. This demonstrates that computer simulations may aid the design of new MR-TADF chromophores by chemical modification. 
    more » « less
  2. Singlet fission (SF) is a photophysical process considered as a possible scheme to bypass the Shockley–Queisser limit by generating two triplet-state excitons from one high-energy photon. Polyacene crystals, such as tetracene and pentacene, have shown outstanding SF performance both theoretically and experimentally. However, their instability prevents them from being utilized in SF-based photovoltaic devices. In search of practical SF chromophores, we use many-body perturbation theory within the GW approximation and Bethe–Salpeter equation to study the excitonic properties of a family of pyrene-stabilized acenes. We propose a criterion to define the convergence of exciton wave-functions with respect to the fine k-point grid used in the BerkeleyGW code. An open-source Python code is presented to perform exciton wave-function convergence checks and streamline the double Bader analysis of exciton character. We find that the singlet excitons in pyrene-stabilized acenes have a higher degree of charge transfer character than in the corresponding acenes. The pyrene-fused tetracene and pentacene derivatives exhibit comparable excitation energies to their corresponding acenes, making them potential SF candidates. The pyrene-stabilized anthracene derivative is considered as a possible candidate for triplet–triplet annihilation because it yields a lower SF driving force than anthracene. 
    more » « less
  3. We demonstrate the impact of subtle changes in molecular structure on the singlet and triplet exciton diffusion lengths ( L D ) for derivatives of the archetypical electron-transport material 4,7-diphenyl-1,10-phenanthroline (BPhen). Specifically, this work offers a systematic characterization of singlet and triplet exciton transport in identically prepared thin films, highlighting the differing dependence on molecular photophysics and intermolecular spacing. For luminescent singlet excitons, photoluminescence quenching measurements yield an L D from <1 nm for BPhen, increasing to (5.4 ± 1.2) nm for 2,9-dichloro-4,7-diphenyl-1,10-phenanthroline (BPhen-Cl 2 ) and (3.9 ± 1.1) nm for 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP). The diffusion of dark triplet excitons is probed using a phosphorescent sensitizer-based method where triplets are selectively injected into the material of interest, with those migrating through the material detected via energy transfer to an adjacent, phosphorescent sensitizer. Interestingly, the triplet exciton L D decreases from (15.4 ± 0.4) nm for BPhen to (8.0 ± 0.7) nm for BPhen-Cl 2 and (4.0 ± 0.5) nm for BCP. The stark difference in behavior observed for singlets and triplets with functionalization is explicitly understood using long-range Förster and short-range Dexter energy transfer mechanisms, respectively. 
    more » « less
  4. The escalating global energy predicament implores for a revolutionary resolution—one that converts sunlight into electricity—holding the key to supreme conversion efficiency. This comprehensive review embarks on the exploration of the principle of generating multiple excitons per absorbed photon, a captivating concept that possesses the potential to redefine the fundamental confines of conversion efficiency, albeit its application remains limited in photovoltaic devices. At the nucleus of this phenomenon are two principal processes: multiple exciton generation (MEG) within quantum-confined environments, and singlet fission (SF) inside molecular crystals. The process of SF, characterized by the cleavage of a single photogenerated singlet exciton into two triplet excitons, holds promise to potentially amplify photon-to-electron conversion efficiency twofold, thereby laying the groundwork to challenge the detailed balance limit of solar cell efficiency. Our discourse primarily dissects the complex nature of SF in crystalline organic semiconductors, laying special emphasis on the anisotropic behavior of SF and the diffusion of the subsequent triplet excitons in single-crystalline polyacene organic semiconductors. We initiate this journey of discovery by elucidating the principles of MEG and SF, tracing their historical genesis, and scrutinizing the anisotropy of SF and the impact of quantum decoherence within the purview of functional mode electron transfer theory. We present an overview of prominent techniques deployed in investigating anisotropic SF in organic semiconductors, including femtosecond transient absorption microscopy and imaging as well as stimulated Raman scattering microscopies, and highlight recent breakthroughs linked with the anisotropic dimensions of Davydov splitting, Herzberg–Teller effects, SF, and triplet transport operations in single-crystalline polyacenes. Through this comprehensive analysis, our objective is to interweave the fundamental principles of anisotropic SF and triplet transport with the current frontiers of scientific discovery, providing inspiration and facilitating future ventures to harness the anisotropic attributes of organic semiconductor crystals in the design of pioneering photovoltaic and photonic devices. 
    more » « less
  5. null (Ed.)
    Hybrid materials comprised of inorganic quantum dots functionalized with small-molecule organic chromophores have emerged as promising materials for reshaping light's energy content. Quantum dots in these structures can serve as light harvesting antennas that absorb photons and pass their energy to molecules bound to their surface in the form of spin-triplet excitons. Energy passed in this manner can fuel upconversion schemes that use triplet fusion to convert infrared light into visible emission. Likewise, triplet excitons passed in the opposite direction, from molecules to quantum dots, can enable solar cells that use singlet fission to circumvent the Shockley–Queisser limit. Silicon QDs represent a key target for these hybrid materials due to silicon's biocompatibility and preeminence within the solar energy market. However, while triplet transfer from silicon QDs to molecules has been observed, no reports to date have shown evidence of energy moving in the reverse direction. Here, we address this gap by creating silicon QDs functionalized with perylene chromophores that exhibit bidirectional triplet exciton transfer. Using transient absorption, we find triplet transfer from silicon to perylene takes place over 4.2 μs while energy transfer in the reverse direction occurs two orders of magnitude faster, on a 22 ns timescale. To demonstrate this system's utility, we use it to create a photon upconversion system that generates blue emission at 475 nm using photons with wavelengths as long as 730 nm. Our work shows formation of covalent linkages between silicon and organic molecules can provide sufficient electronic coupling to allow efficient bidirectional triplet exchange, enabling new technologies for photon conversion. 
    more » « less