skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distributional Semantics of Line Charts for Trend Classification
Line charts are often used to convey high level information about time series data. Unfortunately, these charts are not always described in text, and as a result are often inaccessible to users with visual impairments who rely on screen readers. In these situations, an automated system that can describe the overall trend in a chart would be desirable. This paper presents a novel approach to classifying trends in line chart images, for use in existing chart summarization tools. Previous projects have introduced approaches to automatically summarize line charts, but have thus far been unable to describe chart trends with sufficient accuracy for real-world applications. Instead of classifying an image’s trend via a convolutional neural network (CNN) system, as has been done previously, we present an architecture similar to bag-of-words (BoW) techniques for computer vision, mapping the image classification problem to an analogous natural language problem. We divided images into matrices of image patches which we then each treated as a series of “visual words” which were used to classify each image. We utilized natural language processing (NLP) word embeddings techniques to to create embeddings of visual words that allowed us to model contextual similarity between patches. We trained a linear support vector machine (SVM) model using these patch embeddings as inputs to classify the chart trend. We compared this method against a ResNet classifier pre-trained on ImageNet. Our experimental results showed that the novel approach presented in this paper outperforms existing approaches.  more » « less
Award ID(s):
1954364
PAR ID:
10417995
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Symposium on Visual Computing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chart question answering (CQA) is a newly proposed visual question answering (VQA) task where an algorithm must answer questions about data visualizations, e.g. bar charts, pie charts, and line graphs. CQA requires capabilities that natural-image VQA algorithms lack: fine-grained measurements, optical character recognition, and handling out-of-vocabulary words in both questions and answers. Without modifications, state-of-the-art VQA algorithms perform poorly on this task. Here, we propose a novel CQA algorithm called parallel recurrent fusion of image and language (PReFIL). PReFIL first learns bimodal embeddings by fusing question and image features and then intelligently aggregates these learned embeddings to answer the given question. Despite its simplicity, PReFIL greatly surpasses state-of-the art systems and human baselines on both the FigureQA and DVQA datasets. Additionally, we demonstrate that PReFIL can be used to reconstruct tables by asking a series of questions about a chart. 
    more » « less
  2. null (Ed.)
    Charts are useful communication tools for the presentation of data in a visually appealing format that facilitates comprehension. There have been many studies dedicated to chart mining, which refers to the process of automatic detection, extraction and analysis of charts to reproduce the tabular data that was originally used to create them. By allowing access to data which might not be available in other formats, chart mining facilitates the creation of many downstream applications. This paper presents a comprehensive survey of approaches across all components of the automated chart mining pipeline such as (i) automated extraction of charts from documents; (ii) processing of multi-panel charts; (iii) automatic image classifiers to collect chart images at scale; (iv) automated extraction of data from each chart image, for popular chart types as well as selected specialized classes; (v) applications of chart mining; and (vi) datasets for training and evaluation, and the methods that were used to build them. Finally, we summarize the main trends found in the literature and provide pointers to areas for further research in chart mining. 
    more » « less
  3. To facilitate the reuse of existing charts, previous research has examined how to obtain a semantic understanding of a chart by deconstructing its visual representation into reusable components, such as encodings. However, existing deconstruction approaches primarily focus on chart styles, handling only basic layouts. In this paper, we investigate how to deconstruct chart layouts, focusing on rectangle-based ones as they cover not only 17 chart types but also advanced layouts (e.g., small multiples, nested layouts). We develop an interactive tool, called Mystique, adopting a mixed-initiative approach to extract the axes and legend, and deconstruct a chart’s layout into four semantic components: mark groups, spatial relationships, data encodings, and graphical constraints. Mystique employs a wizard interface that guides chart authors through a series of steps to specify how the deconstructed components map to their own data. On 150 rectangle-based SVG charts, Mystique achieves above 85% accuracy for axis and legend extraction and 96% accuracy for layout deconstruction. In a chart reproduction study, participants could easily reuse existing charts on new datasets. We discuss the current limitations of Mystique and future research directions. 
    more » « less
  4. null (Ed.)
    Neural Machine Translation (NMT) models have been observed to produce poor translations when there are few/no parallel sentences to train the models. In the absence of parallel data, several approaches have turned to the use of images to learn translations. Since images of words, e.g., horse may be unchanged across languages, translations can be identified via images associated with words in different languages that have a high degree of visual similarity. However, translating via images has been shown to improve upon text-only models only marginally. To better understand when images are useful for translation, we study image translatability of words, which we define as the translatability of words via images, by measuring intra- and inter-cluster similarities of image representations of words that are translations of each other. We find that images of words are not always invariant across languages, and that language pairs with shared culture, meaning having either a common language family, ethnicity or religion, have improved image translatability (i.e., have more similar images for similar words) compared to its converse, regardless of their geographic proximity. In addition, in line with previous works that show images help more in translating concrete words, we found that concrete words have improved image translatability compared to abstract ones. 
    more » « less
  5. Chart comprehension presents significant challenges for machine learning models due to the diverse and intricate shapes of charts. Existing multimodal methods often over-look these visual features or fail to integrate them effectively for Chart Question Answering. To address this, we introduce CHARTFORMER, a unified framework that enhances chart component recognition by accurately identifying and classifying components such as bars, lines, pies, titles, legends, and axes. Additionally, we propose a novel Question-guided Deformable Co-Attention (QDCAt) mechanism, which fuses chart features encoded by Chart-former with the given question, leveraging the question's guidance to ground the correct answer. Extensive experiments demonstrate a 3.2% improvement in mAP over the baselines for chart component recognition. For ChartQA and OpenCQA tasks, our approach achieves improvements of 15.4% in accuracy and 0.8 in BLEU score, respectively, underscoring the robustness of our solution for detailed visual data interpretation across various applications. 
    more » « less