skip to main content


Title: F1FO ATP synthase molecular motor mechanisms
The F-ATP synthase, consisting of F 1 and F O motors connected by a central rotor and the stators, is the enzyme responsible for synthesizing the majority of ATP in all organisms. The F 1 (αβ) 3 ring stator contains three catalytic sites. Single-molecule F 1 rotation studies revealed that ATP hydrolysis at each catalytic site (0°) precedes a power-stroke that rotates subunit-γ 120° with angular velocities that vary with rotational position. Catalytic site conformations vary relative to subunit-γ position (β E , empty; β D , ADP bound; β T , ATP-bound). During a power stroke, β E binds ATP (0°–60°) and β D releases ADP (60°–120°). Årrhenius analysis of the power stroke revealed that elastic energy powers rotation via unwinding the γ-subunit coiled-coil. Energy from ATP binding at 34° closes β E upon subunit-γ to drive rotation to 120° and forcing the subunit-γ to exchange its tether from β E to β D , which changes catalytic site conformations. In F 1 F O , the membrane-bound F O complex contains a ring of c-subunits that is attached to subunit-γ. This c-ring rotates relative to the subunit-a stator in response to transmembrane proton flow driven by a pH gradient, which drives subunit-γ rotation in the opposite direction to force ATP synthesis in F 1 . Single-molecule studies of F 1 F O embedded in lipid bilayer nanodisks showed that the c-ring transiently stopped F 1 -ATPase-driven rotation every 36° (at each c-subunit in the c 10 -ring of E. coli F 1 F O ) and was able to rotate 11° in the direction of ATP synthesis. Protonation and deprotonation of the conserved carboxyl group on each c-subunit is facilitated by separate groups of subunit-a residues, which were determined to have different pKa’s. Mutations of any of any residue from either group changed both pKa values, which changed the occurrence of the 11° rotation proportionately. This supports a Grotthuss mechanism for proton translocation and indicates that proton translocation occurs during the 11° steps. This is consistent with a mechanism in which each 36° of rotation the c-ring during ATP synthesis involves a proton translocation-dependent 11° rotation of the c-ring, followed by a 25° rotation driven by electrostatic interaction of the negatively charged unprotonated carboxyl group to the positively charged essential arginine in subunit-a.  more » « less
Award ID(s):
2119963
NSF-PAR ID:
10418022
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most cellular ATP is made by rotary F 1 F O ATP synthases using proton translocation-generated clockwise torque on the F O c-ring rotor, while F 1 -ATP hydrolysis can force counterclockwise rotation and proton pumping. The F O torque-generating mechanism remains elusive even though the F O interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F 1 F O structures. Here, single-molecule F 1 F O rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of F O to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through F O operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the Escherichia coli c 10 -ring of F 1 F O against the torque of F 1 -ATPase-dependent rotation that result from H + transfer events from F O subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c 10 -ring occur to sustain F 1 F O ATP synthesis. 
    more » « less
  2. Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate-switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free-energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in ATP- and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an active to an inactive pose upon ATP hydrolysis and that a residue assigned as the glutamate switch is necessary for regulating this transition. Furthermore, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental measurements. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the structural coupling predicted from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway that couples chemical and mechanical events in viral DNA packaging motors.

     
    more » « less
  3. Abstract

    Immunoglobulin Binding Protein (BiP) is a chaperone and molecular motor belonging to the Hsp70 family, involved in the regulation of important biological processes such as synthesis, folding and translocation of proteins in the Endoplasmic Reticulum. BiP has two highly conserved domains: the N‐terminal Nucleotide‐Binding Domain (NBD), and the C‐terminal Substrate‐Binding Domain (SBD), connected by a hydrophobic linker. ATP binds and it is hydrolyzed to ADP in the NBD, and BiP's extended polypeptide substrates bind in the SBD. Like many molecular motors, BiP function depends on both structural and catalytic properties that may contribute to its performance. One novel approach to study the mechanical properties of BiP considers exploring the changes in the viscoelastic behavior upon ligand binding, using a technique called nano‐rheology. This technique is essentially a traditional rheology experiment, in which an oscillatory force is directly applied to the protein under study, and the resulting average deformation is measured. Our results show that the folded state of the protein behaves like a viscoelastic material, getting softer when it binds nucleotides‐ ATP, ADP, and AMP‐PNP‐, but stiffer when binding HTFPAVL peptide substrate. Also, we observed that peptide binding dramatically increases the affinity for ADP, decreasing it dissociation constant (KD) around 1000 times, demonstrating allosteric coupling between SBD and NBD domains.

     
    more » « less
  4. Abstract Biological molecular motors transform chemical energy into mechanical work by coupling cyclic catalytic reactions to large-scale structural transitions. Mechanical deformation can be surprisingly efficient in realizing such coupling, as demonstrated by the F 1 F O ATP synthase. Here, we describe a synthetic molecular mechanism that transforms a rotary motion of an asymmetric camshaft into reciprocating large-scale transitions in a surrounding stator orchestrated by mechanical deformation. We design the mechanism using DNA origami, characterize its structure via cryo-electron microscopy, and examine its dynamic behavior using single-particle fluorescence microscopy and molecular dynamics simulations. While the camshaft can rotate inside the stator by diffusion, the stator’s mechanics makes the camshaft pause at preferred orientations. By changing the stator’s mechanical stiffness, we accelerate or suppress the Brownian rotation, demonstrating an allosteric coupling between the camshaft and the stator. Our mechanism provides a framework for manufacturing artificial nanomachines that function because of coordinated movements of their components. 
    more » « less
  5. Methyl β-lactoside [methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside] monohydrate, C 13 H 24 O 11 ·H 2 O, (I), was obtained via spontaneous transformation of methyl β-lactoside methanol solvate, (II), during air-drying. Cremer–Pople puckering parameters indicate that the β-D-Gal p (β-D-galactopyranosyl) and β-D-Glc p (β-D-glucopyranosyl) rings in (I) adopt slightly distorted 4 C 1 chair conformations, with the former distorted towards a boat form ( B C1,C4 ) and the latter towards a twist-boat form ( O5 S C2 ). Puckering parameters for (I) and (II) indicate that the conformation of the βGal p ring is slightly more affected than the βGlc p ring by the solvomorphism. Conformations of the terminal O -glycosidic linkages in (I) and (II) are virtually identical, whereas those of the internal O -glycosidic linkage show torsion-angle changes of 6° in both C—O bonds. The exocyclic hydroxymethyl group in the βGal p residue adopts a gt conformation (C4′ anti to O6′) in both (I) and (II), whereas that in the βGlc p residue adopts a gg ( gauche – gauche ) conformation (H5 anti to O6) in (II) and a gt ( gauche – trans ) conformation (C4 anti to O6) in (I). The latter conformational change is critical to the solvomorphism in that it allows water to participate in three hydrogen bonds in (I) as opposed to only two hydrogen bonds in (II), potentially producing a more energetically stable structure for (I) than for (II). Visual inspection of the crystalline lattice of (II) reveals channels in which methanol solvent resides and through which solvent might exchange during solvomorphism. These channels are less apparent in the crystalline lattice of (I). 
    more » « less