The movement of plant species across the globe exposes native communities to new species introductions. While introductions are pervasive, two aspects of variability underlie patterns and processes of biological invasions at macroecological scales. First, only a portion of introduced species become invaders capable of substantially impacting ecosystems. Second, species that do become invasive at one location may not be invasive in others; impacts depend on invader abundance and recipient species and conditions. Accounting for these phenomena is essential to accurately understand the patterns of plant invasion and explain the idiosyncratic results reflected in the literature on biological invasions. The lack of community‐level richness and the abundance of data spanning broad scales and environmental conditions have until now hindered our understanding of invasions at a macroecological scale. To address this limitation, we leveraged quantitative surveys of plant communities in the USA and integrated and harmonized nine datasets into the Standardized Plant Community with Introduced Status (SPCIS) database. The database contains 14,056 unique taxa identified within 83,391 sampling units, of which 52.6% have at least one introduced species. The SPCIS database includes comparable information on plant species occurrence, abundance, and native status across the 50 U.S. States and Puerto Rico. SPCIS can be used to answer macro‐scale questions about native plant communities and interactions with invasive plants. There are no copyright restrictions on the data, and we ask the users of this dataset to cite this paper, the respective paper(s) corresponding to the dataset sampling design (all references are provided in Data S1: Metadata S1: Class II‐B‐2), and the references described in Data S1: Metadata S1: Class III‐B‐4 as applicable to the dataset being utilized.
Historical horticultural plant sales influence native and nonnative species assemblages in contemporary ecosystems. Over half of nonnative, invasive plants naturalized in the United States were introduced as ornamentals, and the spatial and temporal patterns of early introduction undoubtedly influence current invasion ecology. While thousands of digitized nursery catalogs documenting these introductions are publicly available, they have not been standardized in a single database. To fill this gap, we obtained the names of all plant taxa (species, subspecies, and varieties) present in the Biodiversity Heritage Library's (BHL) Seed and Nursery Catalog Collection. We then searched the BHL database for these names and downloaded all available records. We combined BHL records with data from an encyclopedia of heirloom ornamental plants to create a single database of historical nursery sales in the US. Each record represents an individual taxon offered for sale at an individual time in a specific nursery's catalog. We standardized records to the current World Flora Online (
- NSF-PAR ID:
- 10418031
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 104
- Issue:
- 7
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The sale of ornamental nonnative plants is a primary pathway of invasive plant introduction into the US. As a result, many nonnative plants have been identified as noxious weeds by federal and state governments, or as problematic invasive plants by agencies and nonprofit organizations. However, it is unclear whether identifying a species as invasive has curtailed its sale as an ornamental. Using the Google search engine and a database of nursery catalogs, we found that 61% of 1285 plant species identified as invasive in the US remain available through the plant trade, including 50% of state‐regulated species and 20% of federal noxious weeds. Vendors offering invasive plants were located in all lower 48 states. The widespread availability of invasive plants in the US is likely a symptom of disjointed state regulations that fail to protect ecosystems and economies. Regional regulation coupled with outreach to growers and consumers is needed to reduce the ongoing propagation of invasive plants in the US.
-
Abstract Plant trait data are used to quantify how plants respond to environmental factors and can act as indicators of ecosystem function. Measured trait values are influenced by genetics, trade‐offs, competition, environmental conditions, and phenology. These interacting effects on traits are poorly characterized across taxa, and for many traits, measurement protocols are not standardized. As a result, ancillary information about growth and measurement conditions can be highly variable, requiring a flexible data structure. In 2007, the TRY initiative was founded as an integrated database of plant trait data, including ancillary attributes relevant to understanding and interpreting the trait values. The TRY database now integrates around 700 original and collective datasets and has become a central resource of plant trait data. These data are provided in a generic long‐table format, where a unique identifier links different trait records and ancillary data measured on the same entity. Due to the high number of trait records, plant taxa, and types of traits and ancillary data released from the TRY database, data preprocessing is necessary but not straightforward. Here, we present the ‘rtry’ R package, specifically designed to support plant trait data exploration and filtering. By integrating a subset of existing R functions essential for preprocessing, ‘rtry’ avoids the need for users to navigate the extensive R ecosystem and provides the functions under a consistent syntax. ‘rtry’ is therefore easy to use even for beginners in R. Notably, ‘rtry’ does not support data retrieval or analysis; rather, it focuses on the preprocessing tasks to optimize data quality. While ‘rtry’ primarily targets TRY data, its utility extends to data from other sources, such as the National Ecological Observatory Network (NEON). The ‘rtry’ package is available on the Comprehensive R Archive Network (CRAN;
https://cran.r‐project.org/package=rtry ) and the GitHub Wiki (https://github.com/MPI‐BGC‐Functional‐Biogeography/rtry/wiki ) along with comprehensive documentation and vignettes describing detailed data preprocessing workflows. -
Abstract Invasive species utilize a wide array of trait strategies to establish in novel ecosystems. Among these traits is the capacity to produce allelopathic compounds that can directly inhibit neighboring native plants or indirectly suppress native plants via disruption of beneficial belowground microbial mutualisms, or altered soil resources. Despite the well-known prevalence of allelopathy among plant taxa, the pervasiveness of allelopathy among invasive plants is unknown. Here we demonstrate that the majority of the 524 invasive plant species in our database produce allelochemicals with the potential to negatively affect native plant performance. Moreover, allelopathy is widespread across the plant phylogeny, suggesting that allelopathy could have a large impact on native species across the globe. Allelopathic impacts of invasive species are often thought to be present in only a few plant clades (e.g., Brassicaceae). Yet our analysis shows that allelopathy is present in 72% of the 113 plant families surveyed, suggesting that this ubiquitous mechanism of invasion deserves more attention as invasion rates increase across the globe.more » « less
-
Abstract Invasive plants are a prominent threat to ecosystems and economies worldwide. Knowing the identity of invasive plants is critical for preventing their introduction and spread. Yet several lines of evidence, including spatial and taxonomic biases in reporting and the ongoing emergence of new invasives, suggest that we are missing basic information about the identity of invasive plants. Using a database of invasive plants reported in the peer‐reviewed literature between 1959 and 2020, we examined trends in the accumulation of new invasive plants over time and estimated the size of the current pool of invasive plants both continentally and globally. The number of new invasive plants continues to increase exponentially over time, showing no sign of saturation, even in the best studied regions. Moreover, a sample‐size based rarefaction‐extrapolation curve of reported taxa suggests that what is documented in the current literature (3008 taxa) only captures 64% of the likely number of invasive plants globally (4721 taxa ± 132 SE). These estimates varied continentally; less than half of invasive plant taxa have likely been identified in Oceania and Central and South Americas. Studies that included multiple invasive plants (e.g., floristic studies) were much more efficient at adding new taxa to our global understanding of what is invasive (identifying 4.2 times more new taxa than single‐taxon studies). With more potential invaders arriving every day, this analysis highlights a critical gap in our knowledge of the current invasive plant pool. Expanding invasion science to better encompass understudied geographic areas and increasing the numbers of floristic surveys would greatly improve our ability to accurately and efficiently identify what taxa are invasive. Preventing invasive plant introductions is incumbent upon knowing the identity of invasive plants. Thus, large knowledge gaps remain in invasion ecology that hinder efforts to proactively prevent and manage invasive plants.