skip to main content


Title: A metric‐based framework for climate‐smart conservation planning
Abstract

Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area‐based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate‐smart framework that prioritizes the protection of climate refugia—areas of low climate exposure and high biodiversity retention—using climate metrics. We explore four aspects of climate‐smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate‐smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate‐smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade‐offs between: (1) the degree to which they are climate‐smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate‐smart framework helps transition conservation planning toward climate‐smart approaches.

 
more » « less
NSF-PAR ID:
10418043
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
33
Issue:
4
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate adaptation strategies are being developed and implemented to protect biodiversity from the impacts of climate change. A well‐established strategy involves the identification and addition of new areas for conservation, and most countries agreed in 2010 to expand the global protected area (PA) network to 17% by 2020 (Aichi Biodiversity Target 11). Although great efforts to expand the global PA network have been made, the potential of newly established PAs to conserve biodiversity under future climate change remains unclear at the global scale. Here, we conducted the first global‐extent, country‐level assessment of the contribution of PA network expansion toward three key land prioritization approaches for biodiversity persistence under climate change: protecting climate refugia, protecting abiotic diversity, and increasing connectivity. These approaches avoid uncertainties of biodiversity predictions under climate change as well as the issue of undescribed species. We found that 51% of the countries created new PAs in locations with lower mean climate velocity (representing better climate refugia) and 58% added PAs in areas with higher mean abiotic diversity compared to the available, non‐human‐dominated lands not chosen for protection. However, connectivity among PAs declined in 53% of the countries, indicating that many new PAs were located far from existing PAs. Lastly, we identified potential improvements for climate adaptation, showing that 94% of the countries have the opportunity to improve in executing one or more approaches to conserve biodiversity. Most countries (60%) were associated with multiple opportunities, highlighting the need for integrative strategies that target multiple land protection approaches. Our results demonstrate that a global improvement in the protection of climate refugia, abiotic diversity, and connectivity of reserves is needed to complement land protection informed by existing and projected species distributions. Our study also provides a framework for countries to prioritize land protection for climate adaptation using publicly available data.

     
    more » « less
  2. Abstract

    Although climate change projections indicate significant threats to terrestrial biodiversity, the effects are much more profound and striking in the marine environment. Here we explore how different facets of locally distinctiveα- andβ-diversity (changes in spatial composition) of seagrasses will respond to future climate change scenarios across the globe and compare their coverage with the existing network of marine protected areas. By using species distribution modelling and a dated phylogeny, we predict widespread reductions in species’ range sizes that will result in increases in seagrass weighted and phylogenetic endemism. These projected increases of endemism will result in divergent shifts in the spatial composition ofβ-diversity leading to differentiation in some areas and the homogenization of seagrass communities in other regions. Regardless of the climate scenario, the potential hotspots of these projected shifts in seagrassα- andβ-diversity are predicted to occur outside the current network of marine protected areas, providing new priority areas for future conservation planning that incorporate seagrasses. Our findings report responses of species to future climate for a group that is currently under represented in climate change assessments yet crucial in maintaining marine food chains and providing habitat for a wide range of marine biodiversity.

     
    more » « less
  3. Abstract

    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.

     
    more » « less
  4. Abstract

    Many sensitive ecosystems in areas protected for biodiversity conservation in the United States suffer from exposure to excess reactive nitrogen (Nr) released by fossil fuel combustion and agricultural practices and deposited onto the land surface and water bodies. The Community Multiscale Air Quality (CMAQ) model was applied over the contiguous United States to link emissions and climate change to reactive nitrogen deposition by simulating both present‐day and future speciated Nr deposition to protected areas. Future conditions included examining the Representative Concentration Pathway 8.5 climate and the Shared Socio‐Economic Pathway 5 emission scenarios. We further identify protected areas that would benefit most from better Nr management strategies by comparing the simulated deposition with multiple critical loads (CLs) for both biodiversity and acidification in terrestrial and aquatic ecosystems. Achieved by further NOxemission reductions from the mobile and power generation sectors, future Nr deposition is expected to decrease. However, in regions with intensive fertilizer application or hosting concentrated animal feeding operations, the reduction may be offset by rising agricultural NH3emissions. The protected areas having CL exceedances in 2050 are expected to increase by 5.5% for empirical lichen‐based CL, and by 11% and 22% for surface water and forest soil acidity, respectively, because of the agricultural NH3emission increase. By linking the deposition simulations with a water quality model, we identified that atmospheric deposition is the dominant source of nitrogen for several remote watersheds, including several lakes in National Parks and National Wilderness areas in Colorado, Montana, and Minnesota.

     
    more » « less
  5. A key element of conservation action involves the incorporation of sites into networks of protected areas. Historically, most network-creation strategies have been based on considerations of species richness and site complementarity. Nonetheless, phylogenetic or functional biodiversity may be more critical to the maintenance of ecosystem resilience or functioning than is the number of species. Therefore, we explore the efficacy of three strategies (i.e., random, sequential, and simultaneous inclusion of sites into conservation networks of particular sizes) to maximize species richness in a network, and explore associated consequences to aspects of functional and phylogenetic biodiversity. We do so for passerines in Connecticut, bats in Paraguay, and trees in North Carolina, which differ in β, functional, and phylogenetic biodiversity. The efficacy of sequential and simultaneous strategies for conserving species richness are similar at all network sizes and represent improvements over random strategies for each of the three taxa, conserving all species in as few as 35 % of the sites required based on a random strategy. For aspects of functional and phylogenetic biodiversity, metrics converged on the value of the entire biota, even when networks contained as few as five sites, suggesting that richness-based approaches can be effective in guiding conservation action from multiple perspectives. Evaluation of networks intended to conserve biodiversity at spatial extents that include more complex environmental gradients than the examples presented here, or that comprise more heterogenous environments than those represented in our analyses, are needed to more fully explore the generality of our conclusions. 
    more » « less