skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining local, landscape, and regional geographies to assess plant community vulnerability to invasion impact
Abstract Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale‐dependent impact of biological invasions on native richness from the shape of the native species–area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non‐native plant cover. Decreases in native richness were consistently associated with non‐native species cover, but native richness was compromised only at relatively high levels of non‐native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross‐scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions.  more » « less
Award ID(s):
1724433
PAR ID:
10418069
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
33
Issue:
4
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Invasive forest pests can affect the composition and physical structure of forest canopies that may facilitate invasion by non‐native plants. However, it remains unclear whether this process is generalizable across invasive plant species at broad spatial scales, and how other landscape characteristics may simultaneously facilitate non‐native plant invasion. Here, we assembled a dataset of over 3000 repeatedly measured forest plots and quantified the impact of emerald ash borer (EAB,Agrilus planipennis) residence time, land cover, and forest structure on the accumulation and coverage of invasive plants. We show plots in counties with longer EAB residences tended to accumulate more invasive plants than plots with shorter EAB residences. On average, nearly half of the plots with ash (Fraxinusspp.) in counties with EAB accumulated an additional 0.48 invasive plant species over the 5‐ to 6‐year resample interval compared to plots with ash in counties without EAB at the time of sampling. Increases in invasive species coverage were also evident in counties with EAB—although residence time did not have a strong effect, while forest gap fraction and vertical complexity were each negatively associated with increased coverage. This work has implications for understanding how invasive forest pests can facilitate the spread of non‐native plants. 
    more » « less
  2. The impact of a biological invasion on native communities is expected to be uneven across invaded landscapes due to differences in local abiotic conditions, invader abundance, and traits and composition of the native community. One way to improve predictive ability about the impact of an invasive species given variable conditions is to exploit known mechanisms driving invasive species' success. Invasive plants frequently exhibit allelopathic traits, which can be directly toxic to plants or indirectly impact them via disruption of root symbionts, including mycorrhizal fungi. The indirect mechanism – mutualism disruption – is predicted to impact plants that rely on mycorrhizas but not affect non‐mycorrhizal plant species. To assess whether invader‐driven mutualism disruption explains observed changes in native plant communities, we analyzed long‐term (1998–2018) plant cover data from forest plots across the state of Illinois. We evaluated native plant communities experiencing a range of abundance of invasive allelopathic garlic mustardAlliaria petiolataand varying environmental conditions. Consistent with the mutualism disruption hypothesis, we showed that as garlic mustard abundance increased over time in 0.25 m2sampling quadrats, the abundance of mycorrhizal plant species decreased, but non‐mycorrhizal plant species did not. Over space and time, garlic mustard abundance predicted plant abundances and diversity at the quadrat level, but this relationship was not present at a larger scale when quadrats were aggregated within sites. Garlic mustard's impact on the plant community was highly localized, yet it was as important as abiotic variables for predicting local plant diversity. We showed that garlic mustard abundance was a key predictor of patterns of plant diversity across invasion intensity and environmental heterogeneity in a way that is consistent with mutualism disruption. Our work indicates that the mutualism disruption hypothesis can provide generalizable predictions of the impacts of allelopathic invasive plants that are evident at a broad spatial scale. 
    more » « less
  3. Ecological communities often exhibit greater resistance to biological invasions when these communities consist of species that are not closely related. The effective size of this resistance, however, varies geographically. Here we investigate the drivers of this heterogeneity in the context of known contributions of native trees to the resistance of forests in the eastern United States of America to plant invasions. Using 42,626 spatially referenced forest community observations, we quantified spatial heterogeneity in relationships between evolutionary relatedness amongst native trees and both invasive plant species richness and cover. We then modelled the variability amongst the 91 ecological sections of our study area in the slopes of these relationships in response to three factors known to affect invasion and evolutionary relationships –environmental harshness (as estimated via tree height), relative tree density and environmental variability. Invasive species richness and cover declined in plots having less evolutionarily related native trees. The degree to which they did, however, varied considerably amongst ecological sections. This variability was explained by an ecological section’s mean maximum tree height and, to a lesser degree, SD in maximum tree height ( R 2 GLMM = 0.47 to 0.63). In general, less evolutionarily related native tree communities better resisted overall plant invasions in less harsh forests and in forests where the degree of harshness was more homogenous. These findings can guide future investigations aimed at identifying the mechanisms by which evolutionary relatedness of native species affects exotic species invasions and the environmental conditions under which these effects are most pronounced. 
    more » « less
  4. Invasive plants often use mutualisms to establish in their new habitats and tend to be visited by resident pollinators similarly or more frequently than native plants. The quality and resulting reproductive success of those visits, however, have rarely been studied in a network context. Here, we use a dynamic model to evaluate the invasion success and impacts on natives of various types of non‐native plant species introduced into thousands of plant–pollinator networks of varying structure. We found that network structure properties did not predict invasion success, but non‐native traits and interactions did. Specifically, non‐native plants producing high amounts of floral rewards but visited by few pollinators at the moment of their introduction were the only plant species able to invade the networks. This result is determined by the transient dynamics occurring right after the plant introduction. Successful invasions increased the abundance of pollinators that visited the invader, but the reallocation of the pollinators' foraging effort from native plants to the invader reduced the quantity and quality of visits received by native plants and made the networks slightly more modular and nested. The positive and negative effects of the invader on pollinator and plant abundance, respectively, were buffered by plant richness. Our results call for evaluating the impact of invasive plants not only on visitation rates and network structure, but also on processes beyond pollination including seed production and recruitment of native plants. 
    more » « less
  5. Doi, Hideyuki (Ed.)
    Non-native species have the potential to cause ecological and economic harm to coastal and estuarine ecosystems. Understanding which habitat types are most vulnerable to biological invasions, where invasions originate, and the vectors by which they arrive can help direct limited resources to prevent or mitigate ecological and socio-economic harm. Information about the occurrence of non-native species can help guide interventions at all stages of invasion, from first introduction, to naturalization and invasion. However, monitoring at relevant scales requires considerable investment of time, resources, and taxonomic expertise. Environmental DNA (eDNA) metabarcoding methods sample coastal ecosystems at broad spatial and temporal scales to augment established monitoring methods. We use COI mtDNA eDNA sampling to survey a diverse assemblage of species across distinct habitats in the Salish Sea in Washington State, USA, and classify each as non-native, native, or indeterminate in origin. The non-native species detected include both well-documented invaders and species not previously reported within the Salish Sea. We find a non-native assemblage dominated by shellfish and algae with native ranges in the temperate western Pacific, and find more-retentive estuarine habitats to be invaded at far higher levels than better-flushed rocky shores. Furthermore, we find an increase in invasion level with higher water temperatures in spring and summer across habitat types. This analysis contributes to a growing understanding of the biotic and abiotic factors that influence invasion level, and underscores the utility of eDNA surveys to monitor biological invasions and to better understand the factors that drive these invasions. 
    more » « less