skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Field strength effect on elastoplastic behavior of aluminoborosilicate glass: I. Elastic moduli and indentation size effect
Abstract

The modifier field strength (FS) is believed to play an important role in determining the elastic–plastic responses of aluminoborosilicate (ABS) glasses, but its effect is not well understood. Three novel alkali and three alkaline earth (AE) ABS compositions were created for this study which is the first part of two studies that explored the elastoplastic responses of these glasses. Six compositions were designed using different network modifiers (NWMs) to cover a range of cation FS. The glasses were also designed such that the concentrations of NWM and Al2O3were similar, which maximized the three‐coordinated boron fraction in the network. It is well known that modifier FS can affect the coordination number (CN) of Al and B in an ABS glass structure, for example, a higher FS modifier can promote B3 → B4and higher [Al5,6], but the degree of this depends on network former (NWF) ratios. Previous work used solid‐state NMR spectroscopic analysis on the current glasses to find that there was variation between [B4] and [Al4] between the two glass series (alkali vs. AE) but that was attributed to synthesis factors and no trend with FS was associated with the varying NWF CN. Further,29Si ssNMR showed no evidence of NBOs which made sense based on composition. The conclusion, therefore, was that there was a far greater correlation with modifier FS for the increased mechanical and physical properties rather than the CN of Al and B. Part I of the current work focused on the elastic moduli, Poisson's ratio, the indentation size effect (ISE), and the bow‐in parameter. This part laid out the foundation to investigate the intersection of these elastoplastic properties with hardness and crack resistance as a function of NWM FS. Results showed that: (i) the Young's, bulk, and shear moduli increased with modifier FS, whereas Poisson's ratio did not trend with FS; (ii) the alkali glasses had a significantly higher magnitudes of ISE compared to the AE glasses; and (iii) the bow‐in parameter was load dependent and decreased with modifier FS at the highest indentation load.

 
more » « less
Award ID(s):
2011410
PAR ID:
10418075
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
106
Issue:
8
ISSN:
0002-7820
Page Range / eLocation ID:
p. 4664-4677
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although the interactions among glass formers and modifiers, for example, connectivity and charge distribution, have been studied extensively in oxide glasses, the impact of a particular modifier species on the mechanical performance of aluminoborosilicate (ABS) glasses is not well understood. This work compares the indentation properties of six ABS glasses, each of which contains a different network modifier (NWM) with varying field strength (FS). Three alkali and three alkaline earth ABS glasses were designed with low NWM content and [NWM] ≈ [Al2O3], to test the modifier FS effect at low concentrations and to maximize three‐coordinated boron. It has been found that both hardness and crack resistance increase with increasing FS in these ABS systems, which is surprising in the context of historical reports. Using11B,27Al, and29Si solid‐state nuclear magnetic resonance, this work provides evidence of how charge distributions differ as a function of NWM species, and how this relates to the observed indentation behaviors.

     
    more » « less
  2. Abstract

    The field strength (FS) effect of six different network modifiers on the elastoplastic properties of aluminoborosilicate glasses was explored using a volumetric recovery study. This work, in conjunction with Part I, explored the intersection of hardness, crack resistance, and other physical properties with glass elasticity. Results showed that (1) the elastic volume fraction decreased with FS for both the alkali and alkaline earth (AE) glasses; (2) the Poisson's ratio did not trend with pile‐up or shear flow volume fraction; (3) the elastic‐to‐plastic deformation ratio increased with applied load and decreased with modifier FS for both the alkali and AE glasses; and (4) an increase in plasticity correlated with increased hardness, crack resistance, and elastic moduli.

     
    more » « less
  3. Abstract

    Lithium aluminoborate glasses have recently been found to feature high resistance to crack initiation during indentation, but suffer from relatively low hardness and chemical durability. To further understand the mechanical properties of this glass family and their correlation with the network structure, we here study the effect of adding SiO2to a 25Li2O–20Al2O3–55B2O3glass on the structure and mechanical properties. Addition of silica increases the average network rigidity, but meanwhile its open tetrahedral structure decreases the atomic packing density. Consequently, we only observe a minor increase in hardness and glass transition temperature, and a decrease in Poisson's ratio. The addition of SiO2, and thus removal of Al2O3and/or B2O3, also makes the network less structurally adaptive to applied stress, since Al and B easily increase their coordination number under pressure, while this is not the case for Si under modest pressures. As such, although the silica‐containing networks have more free volume, they cannot densify more during indentation, which in turn leads to an overall decrease in crack resistance upon SiO2addition. Our work shows that, although pure silica glass has very high glass transition temperature and relatively high hardness, its addition in oxide glasses does not necessarily lead to significant increase in these properties due to the complex structural interactions in mixed network former glasses and the competitive effects of free volume and network rigidity.

     
    more » « less
  4. Abstract

    Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence ofR = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asRincreases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofRand the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR. The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution.

     
    more » « less
  5. Abstract

    The structure of lithium bismuth borate glasses in the compositional seriesxBi2O3–25Li2O–(75 − x) B2O3was studied with the use of Raman and infrared (IR) spectroscopies. Transparent glasses formed betweenx = 0 and 55, whereas glass–ceramics formed betweenx = 60 and 75 mol% Bi2O3. Structural investigation on the borate network showed that the glasses were undermodified at high Bi2O3compositions with metaborate, pyroborate, and orthoborate triangles and tetrahedra being present past the stoichiometric orthoborate compositions (O/B = 3). Bi2O3was found to participate in the glass as both a network former and modifier, as observed in the Raman and IR spectra. Optical absorption spectra of the glasses show a redshift of the absorption edge with increased Bi2O3. Optical, thermal, and physical properties of the glasses were examined and correlated to the structural evolution.

     
    more » « less