We present measurements of an optomechanical accelerometer for monitoring low-frequency noise in gravitational wave detectors, such as ground motion. Our device measures accelerations by tracking the test-mass motion of a 4.7 Hz mechanical resonator using a heterodyne interferometer. This resonator is etched from monolithic fused silica, an under-explored design in low-frequency sensors, allowing a device with a noise floor competitive with existing technologies but with a lighter and more compact form. In addition, our heterodyne interferometer is a compact optical assembly that can be integrated directly into the mechanical resonator wafer to further reduce the overall size of our accelerometer. We anticipate this accelerometer to perform competitively with commercial seismometers, and benchtop measurements show a noise floor reaching 82 pico-g Hz−1/2 sensitivities at 0.4 Hz. Furthermore, we present the effects of air pressure, laser fluctuations, and temperature to determine the stability requirements needed to achieve thermally limited measurements.
more »
« less
Reducing control noise in gravitational wave detectors with interferometric local damping of suspended optics
Control noise is a limiting factor in the low-frequency performance of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). In this paper, we model the effects of using new sensors called Homodyne Quadrature Interferometers (HoQIs) to control the suspension resonances. We show that if we were to use HoQIs, instead of the standard shadow sensors, we could suppress resonance peaks up to tenfold more while simultaneously reducing the noise injected by the damping system. Through a cascade of effects, this will reduce the resonant cross-coupling of the suspensions, allow for improved stability for feed-forward control, and result in improved sensitivity of the detectors in the 10–20 Hz band. This analysis shows that improved local sensors, such as HoQIs, should be used in current and future detectors to improve low-frequency performance.
more »
« less
- Award ID(s):
- 2011786
- PAR ID:
- 10418361
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 94
- Issue:
- 5
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article reports a comprehensive statistical analysis of uncooled infrared (IR) detectors based on radiofrequency (RF) aluminum nitride (AlN) contour mode resonators (CMRs) integrated with spectrally selective IR metasurfaces. Moreover, it reports the lowest noise equivalent power (NEP) recorded from these types of devices (∼11 pW/√Hz). The metasurfaces are printed on top of the AlN resonator body to decouple mechanical, RF, and IR responses. Optical lithography is used to pattern the metasurfaces, allowing the fabrication of hundreds of spectrally-selective IR detectors with different sensing performance within the same chip. An automated characterization system is employed to quickly record parameters such as quality factor, noise, and responsivity. This approach allows to experimentally determine the geometrical dimensions of quasi-optimal IR detectors that exhibit NEP in the pW/√Hz range and responsivities in the Hz/nW range. Additionally, the detectors performance versus IR light is explored using different interrogation mechanisms, namely monitoring the CMR resonance frequency as well as the amplitude and phase of a RF signal that excites the device at resonance. The statistical analysis of hundreds of IR sensors reveals trends between parameters such quality factor and noise floor, and NEP and responsivity. These trends provide useful guidelines towards the development of quasi-optimal spectrally-selective IR sensors operating at room temperature.more » « less
-
Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of Hz to several kHz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz, while in the Livingston detector, the noise reduction was a factor of 1.9 (5.8dB). These improvements directly impact LIGO’s scientific output for high-frequency sources (e.g., binary neutron star post-merger physics). The improved low-frequency sensitivity, which boosted the detector range by 15–18 % with respect to no squeezing, corresponds to an increase in astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter long filter cavity to each detector as part of the LIGO A+ upgrade.more » « less
-
Time-division multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high-frequency receivers, observing at 150 GHz and 220/270 GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard multichannel electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates time-division multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and cross talk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with time-division/SQUID-based readout for an even larger number of detectors.more » « less
-
Abstract Detection of long wave infrared (LWIR) light at room temperature is a long‐standing challenge due to the low energy of photons. A low‐cost, high‐performance LWIR detector or camera that operates under such conditions is pursued for decades. Currently, all available detectors operate based on amplitude modulation (AM) and are limited in performance by AM noises, including Johnson noise, shot noise, and background fluctuation noise. To address this challenge, a frequency modulation (FM)‐based detection technique is introduced, which offers inherent robustness against different types of AM noises. The FM‐based approach yields an outstanding room temperature noise equivalent power (NEP), response time, and detectivity (D*). This result promises a novel uncooled LWIR detection scheme that is highly sensitive, low‐cost, and can be easily integrated with electronic readout circuitry, without the need for complex hybridization.more » « less