skip to main content


Title: Complex wound response mechanisms and phellogen evolution – insights from Early Devonian euphyllophytes
Summary

We analyze the oldest fossil occurrences of wound‐response periderm to characterize the development of wound responses in early tracheophytes. The origin of periderm production by a cambium (phellogen), an innovation with key roles in protection of inner plant tissues, is poorly explored; understanding periderm development in early tracheophytes can illuminate key aspects of this process.

Anatomy of wound‐response tissues is characterized in serial sections in a new Early Devonian (Emsian;c. 400 Ma) euphyllophyte from Quebec (Canada) –Nebuloxyla mikmaqianasp. nov. – and compared to previously described euphyllophyte periderm from the same fossil locality to reconstruct periderm development.

Characterizing development in these oldest periderm occurrences allows us to propose a model for the development of wound‐response periderm in early tracheophytes: by phellogen activity that is poorly coordinated laterally but bifacial, producing secondary tissues initially outwardly and subsequently inwardly.

The earliest occurrences of wound periderm pre‐date the oldest known periderm produced systemically as a regular ontogenetic stage (canonical periderm), suggesting that periderm evolved initially as a wound‐response mechanism. We hypothesize that canonical periderm evolved by exaptation of this wound sealing mechanism, whose deployment was triggered by tangential tensional stresses induced in the superficial tissues by vascular cambial growth from within.

 
more » « less
NSF-PAR ID:
10418421
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
239
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
p. 388-398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Periderm is a well‐known structural feature with vital roles in protection of inner plant tissues and wound healing. Despite its importance to plant survival, knowledge of periderm occurrences outside the seed plants is limited and the evolutionary origins of periderm remain poorly explored. Here, we review the current knowledge of the taxonomic distribution of periderm in its two main forms – canonical periderm (periderm formed as a typical ontogenetic stage) and wound periderm (periderm produced as a self‐repair mechanism) – with a focus on major plant lineages, living and extinct. We supplement the published occurrences with data based on our own observations and experiments. This updated body of data reveals that the distribution of wound periderm is more widespread taxonomically than previously recognized and some living and extinct groups are capable of producing wound periderm, despite canonical periderm being absent from their normal developmental program. A critical review of canonical and wound periderms in extant and fossil lineages indicates that not all periderms are created equal. Their organisation is widely variable and the differences can be characterised in terms of variations in three structural features: (i) the consistency in orientation of periclinal walls within individual files of periderm cells; (ii) the lateral coordination of periclinal walls between adjacent cell files; and (iii) whether a cambial layer and conspicuous layering of inward and outward derivatives can be distinguished. Using a new system of scoring periderm structure based on these criteria, we characterise the level of organisation of canonical and wound periderms in different lineages. Looking at periderms through the lens provided by their level of organisation reveals that the traditional image of periderm as a single generalised feature, is best viewed as a continuum of structural configurations that are all predicated by the same basic process (periclinal divisions), but can fall anywhere between very loosely organized (diffuse periclinal growth) to very tightly coordinated (organized periclinal growth). Overall, wound periderms in both seed plants and seed‐free plants have lower degrees of organisation than canonical periderms, which may be due to their initiation in response to inherently disruptive traumatic events. Wound and canonical periderms of seed plants have higher degrees of organisation than those of seed‐free plants, possibly due to co‐option of the programs responsible for organizing their vascular cambial growth. Given the importance of wound periderm to plant survival, its widespread taxonomic distribution, and its early occurrence in the fossil record, we hypothesise that wound periderm may have had a single origin in euphyllophytes and canonical periderm may have originated separately in different lineages by co‐option of the basic regulatory toolkit of wound periderm formation. In one evolutionary scenario, wound periderm regulators activated initially by tissue tearing due to tensional stresses elicited by woody growth underwent heterochronic change that switched their activation trigger from tissue tearing to the tensional stresses that precede it, with corresponding changes in the signalling that triggered the regulatory cascade of periderm development from tearing‐induced signals to signalling induced by tension in cells.

     
    more » « less
  2. Summary

    Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem–environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution.

    We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family.

    The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter‐ and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue‐specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small‐scale gene duplication events in the evolution of metabolic pathways.

    This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.

     
    more » « less
  3. Summary

    The occurrence of conducting vascular tissue in the pith (CVTP) of tracheophytes is noteworthy. Medullary bundles, one of the remarkable examples of CVTP, evolved multiple times across angiosperms, notably in the Caryophyllales. Yet, information on the occurrence of medullary bundles is fragmented, hampering our understanding of their structure–function relationships, and evolutionary implications.

    Using three plastid molecular markers (matK,rbcL, andrps16 intron), a phylogeny is constructed for 561 species of Caryophyllales, and anatomical data are assembled for 856 species across 40 families to investigate the diversity of medullary bundles, their function, evolution, and diversification dynamics. Additionally, correlated evolution between medullary bundles and successive cambia was tested.

    Medullary bundles are ancestrally absent in Caryophyllales and evolved in core and noncore families. They are structurally diverse (e.g. number, arrangement, and types of bundles) and functionally active throughout the plant's lifespan, providing increased hydraulic conductivity, especially in herbaceous plants. Acquisition of medullary bundles does not explain diversification rate heterogeneity but is correlated to a higher diversification rate.

    Disparate developmental pathways were found leading to rampant convergent evolution of CVTP in Caryophyllales. These findings indicate the diversification of medullary bundles and vascular tissues as another central theme for functional and comparative molecular studies in Caryophyllales.

     
    more » « less
  4. Summary

    Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat‐tolerant Brassicaceae speciesAnastatica hierochunticais an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts.

    We generated anA. hierochunticareference transcriptome and identified extremophyte adaptations by comparingArabidopsis thalianaandA. hierochunticatranscriptome responses to heat, and detecting positively selected genes inA. hierochuntica.

    The two species exhibit similar transcriptome adjustment in response to heat and theA. hierochunticatranscriptome does not exist in a constitutive heat ‘stress‐ready’ state. Furthermore, theA. hierochunticaglobal transcriptome as well as heat‐responsive orthologs, display a lower basal and higher heat‐induced expression than inA. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV‐B induced DNA repair while those unique toA. hierochunticaare consistent with its photoperiod‐insensitive, early‐flowering phenotype.

    We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.

     
    more » « less
  5. Summary

    The evolution oflDOPA4,5‐dioxygenase activity, encoded by the geneDODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed thatlDOPA4,5‐dioxygenase activity evolved via a single Caryophyllales‐specific neofunctionalisation event within theDODAgene lineage. However, this neofunctionalisation event has not been confirmed and theDODAgene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear.

    To address this, we functionally characterised 23 distinctDODAproteins forlDOPA4,5‐dioxygenase activity, from four betalain‐pigmented and five anthocyanin‐pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updatedDODAphylogeny, we then explored the evolution oflDOPA4,5‐dioxygenase activity.

    We find that lowlDOPA4,5‐dioxygenase activity is distributed across theDODAgene lineage. In this context, repeated gene duplication events within theDODAgene lineage give rise to polyphyletic occurrences of elevatedlDOPA4,5‐dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro‐synteny.

    In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevatedlDOPA4,5‐dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.

     
    more » « less