Nonlinear increases in warm season temperatures are projected for many regions, a phenomenon we show to be associated with relative surface drying. However, negative human health impacts are physiologically linked to combinations of high temperatures and high humidity. Since the amplified warming and drying are concurrent, the net effect on humid-heat, as measured by the wet bulb temperature (
Humid‐heat extremes threaten human health and are increasing in frequency with global warming, so elucidating factors affecting their rate of change is critical. We investigate the role of wet‐bulb temperature (
- PAR ID:
- 10418432
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 11
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract T W), is uncertain. We demonstrate that globally, on the hottest days of the year, the positive effect of amplified warming onT Wis counterbalanced by a larger negative effect resulting from drying. As a result, the largest increases inT WandT xdo not occur on the same days. Compared to a world with linear temperature change, the drying associated with nonlinear warming dampens mid-latitudeT Wincreases by up to 0.5 °C, and also dampens the rise in frequency of dangerous humid-heat (T W > 27 °C) by up to 5 d per year in parts of North America and Europe. Our results highlight the opposing interactions among temperature and humidity changes and their effects onT W, and point to the importance of constraining uncertainty in hydrological and warm season humidity changes to best position the management of future humid-heat risks. -
Abstract Extreme wet-bulb temperatures (
Tw ) are often used as indicators of heat stress. However, humid heat extremes are fundamentally compound events, and a givenTw can be generated by various combinations of temperature and humidity. Differentiating between extreme humid heat driven by temperature versus humidity is essential to identifying these extremes’ physical drivers and preparing for their distinct impacts. Here we explore the variety of combinations of temperature and humidity contributing to humid heat experienced across the globe. In addition to using traditional metrics, we derive a novel thermodynamic state variable named “stickiness.” Analogous to the oceanographic variable “spice” (which quantifies the relative contributions of temperature and salinity to a given water density), stickiness quantifies the relative contributions of temperature and specific humidity to a givenTw . Consistent across metrics, we find that high magnitudes ofTw tend to occur in the presence of anomalously high moisture, with temperature anomalies of secondary importance. This widespread humidity dependence is consistent with the nonlinear relationship between temperature and specific humidity as prescribed by the Clausius–Clapeyron relationship. Nonetheless, there is a range of stickiness observed at moderate-to-highTw thresholds. Stickiness allows a more objective evaluation of spatial and temporal variability in the temperature versus humidity dependence of humid heat than traditional variables. In regions with high temporal variability in stickiness, predictive skill for humid heat-related impacts may improve by considering fluctuations in atmospheric humidity in addition to dry-bulb temperature.Significance Statement Extreme humid heat increases the risk of heat stress through its influence over humans’ ability to cool down by sweating. Understanding whether humid heat extremes are generated more due to elevated temperature or humidity is important for identifying factors that may increase local risk, preparing for associated impacts, and developing targeted adaptation measures. Here we explore combinations of temperature and humidity across the globe using traditional metrics and by deriving a new variable called “stickiness.” We find that extreme humid heat at dangerous thresholds occurs primarily due to elevated humidity, but that stickiness allows for thorough analysis of the drivers of humid heat at lower thresholds, including identification of regions prone to low- or high-stickiness extremes.
-
Abstract Extreme heat research has largely focused on dry‐heat, while humid‐heat that poses a substantial threat to human‐health remains relatively understudied. Using hourly high‐resolution ERA5 reanalysis and HadISD station data, we provide the first spatially comprehensive, global‐scale characterization of the magnitude, seasonal timing, and frequency of dry‐ and wet‐bulb temperature extremes and their trends. While the peak dry‐ and humid‐heat extreme occurrences often coincide, their timing differs in climatologically wet regions. Since 1979, dry‐ and humid‐heat extremes have become more frequent over most land regions, with the greatest increases in the tropics and Arctic. Humid‐heat extremes have increased disproportionately over populated regions (∼5.0 days per‐person per‐decade) relative to global land‐areas (∼3.6 days per‐unit‐land‐area per‐decade) and population exposure to humid‐heat has increased at a faster rate than to dry‐heat. Our study highlights the need for a multivariate approach to understand and mitigate future harm from heat stress in a warming world.
-
Abstract Coherent regions exhibiting non‐Gaussian 2‐m temperature distribution tails are present across the globe, indicating changes in extreme temperatures under future warming may manifest in more complex ways than were the underlying distributions symmetric about the mean. To further the understanding of physical processes that govern temperature distribution tail shape, this work utilizes a back‐trajectory model to diagnose mechanisms for extreme daily mean temperature development at select extratropical locations exhibiting non‐Gaussian tails. Although characteristics such as direction, distance, and temperature evolution vary among back‐trajectories associated with extreme temperature days, results reveal principal pathways for air parcel propagation associated with preferred patterns in large‐scale circulation. A relatively persistent synoptic setup leads to thermal advection, which interacts with local geographic features to produce a shorter‐ or longer‐than‐Gaussian tail. Significant relationships with recurrent modes of atmospheric and sea surface temperature variability further suggest the influence of teleconnection wave patterns and ocean temperatures on extreme daily temperature occurrence over land, though local, smaller‐scale processes are also important. Air parcels transporting extreme temperatures at short‐tailed locations often originate in marine environments, constraining the magnitude of the temperature extreme, while locations exhibiting long cold tails require rare meteorological conditions to transport the coldest air from poleward source regions often partially blocked by topography or downstream of the prevailing wind. Processes governing longer‐than‐Gaussian warm tails at locations examined are more subtle and not as obviously dominated by horizontal advection. Results provide added insight into our understanding of temperature extremes and how they may change in the future at regional scales.
-
Abstract Human heat stress depends jointly on atmospheric temperature and humidity. Wetter soils reduce temperature but also raise humidity, making the collective impact on heat stress unclear. To better understand these interactions, we use ERA5 to examine the coupling between daily average soil moisture and wet-bulb temperature (
Tw ) and its seasonal and diurnal cycle at global scale. We identify a global soil moisture–Tw coupling pattern with both widespread negative and positive correlations in contrast to the well-established cooling effect of wet soil on dry-bulb temperature. Regions showing positive correlations closely resemble previously identified land–atmosphere coupling hotspots where soil moisture effectively controls surface energy partition. Soil moisture–Tw coupling varies seasonally closely tied to monsoon development, and the positive coupling is slightly stronger and more widespread during nighttime. Local-scale analysis demonstrates a nonlinear structure of soil moisture–Tw coupling with stronger coupling under relatively dry soils. Hot days with highTw values show wetter-than-normal soil, anomalous high latent and low sensible heat flux from a cooler surface, and a shallower boundary layer. This supports the hypothesis that wetter soil increasesTw by concentrating surface moist enthalpy flux within a shallower boundary layer and reducing free-troposphere-air entrainment. We identify areas of particular interest for future studies on the physical mechanisms of soil moisture–heat stress coupling. Our findings suggest that increasing soil moisture might amplify heat stress over large portions of the world including several densely populated areas. These results also raise questions about the effectiveness of evaporative cooling strategies in ameliorating urban heat stress.Significance Statement The purpose of this study is to provide a global picture of the relationship between soil moisture anomalies and a heat stress metric that includes the joint effects of temperature and humidity. This is important because a better understanding of this relationship will help improve the prediction of extreme heat stress events and inform strategies for ameliorating heat stress. We find a widespread positive correlation between soil moisture and heat stress, in contrast to studies relying on temperature alone. This raises the possibility that, over much of the world, and in the most populous regions, strategies like irrigation or “greening” that can reduce temperature might be ineffective or even harmful in reducing heat stress with humidity incorporated.