Abstract We present an expansion of FLEET, a machine-learning algorithm optimized to select transients that are most likely tidal disruption events (TDEs). FLEET is based on a random forest algorithm trained on both the light curves and host galaxy information of 4779 spectroscopically classified transients. We find that for transients with a probability of being a TDE,P(TDE) > 0.5, we can successfully recover TDEs with ≈40% completeness and ≈30% purity when using their first 20 days of photometry or a similar completeness and ≈50% purity when including 40 days of photometry, an improvement of almost 2 orders of magnitude compared to random selection. Alternatively, we can recover TDEs with a maximum purity of ≈80% and a completeness of ≈30% when considering only transients withP(TDE) > 0.8. We explore the use of FLEET for future time-domain surveys such as the Legacy Survey of Space and Time on the Vera C. Rubin Observatory (Rubin) and the Nancy Grace Roman Space Telescope (Roman). We estimate that ∼104well-observed TDEs could be discovered every year by Rubin and ∼200 TDEs by Roman. Finally, we run FLEET on the TDEs from our Rubin survey simulation and find that we can recover ∼30% of them at redshiftz< 0.5 withP(TDE) > 0.5, or ∼3000 TDEs yr–1that FLEET could uncover from the Rubin stream. We have demonstrated that we will be able to run FLEET on Rubin photometry as soon as this survey begins. FLEET is provided as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.
more »
« less
The First Two Years of FLEET: An Active Search for Superluminous Supernovae
Abstract In 2019 November, we began operating Finding Luminous and Exotic Extragalactic Transients (FLEET), a machine-learning algorithm designed to photometrically identify Type I superluminous supernovae (SLSNe) in transient alert streams. Through this observational campaign, we spectroscopically classified 21 of the 50 SLSNe identified worldwide between 2019 November and 2022 January. Based on our original algorithm, we anticipated that FLEET would achieve a purity of about 50% for transients with a probability of being an SLSN,P(SLSN-I) > 0.5; the true on-sky purity we obtained is closer to 80%. Similarly, we anticipated FLEET could reach a completeness of about 30%, and we indeed measure an upper limit on the completeness of ≲33%. Here we present FLEET 2.0, an updated version of FLEET trained on 4780 transients (almost three times more than FLEET 1.0). FLEET 2.0 has a similar predicted purity to FLEET 1.0 but outperforms FLEET 1.0 in terms of completeness, which is now closer to ≈40% for transients withP(SLSN-I) > 0.5. Additionally, we explore the possible systematics that might arise from the use of FLEET for target selection. We find that the population of SLSNe recovered by FLEET is mostly indistinguishable from the overall SLSN population in terms of physical and most observational parameters. We provide FLEET as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.
more »
« less
- Award ID(s):
- 2108531
- PAR ID:
- 10418475
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 949
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 114
- Size(s):
- Article No. 114
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over the past decade wide-field optical time-domain surveys have increased the discovery rate of transients to the point that ≲10% are being spectroscopically classified. Despite this, these surveys have enabled the discovery of new and rare types of transients, most notably the class of hydrogen-poor superluminous supernovae (SLSN-I), with about 150 events confirmed to date. Here we present a machine-learning classification algorithm targeted at rapid identification of a pure sample of SLSN-I to enable spectroscopic and multiwavelength follow-up. This algorithm is part of the Finding Luminous and Exotic Extragalactic Transients (FLEET) observational strategy. It utilizes both light-curve and contextual information, but without the need for a redshift, to assign each newly discovered transient a probability of being a SLSN-I. This classifier can achieve a maximum purity of about 85% (with 20% completeness) when observing a selection of SLSN-I candidates. Additionally, we present two alternative classifiers that use either redshifts or complete light curves and can achieve an even higher purity and completeness. At the current discovery rate, the FLEET algorithm can provide about 20 SLSN-I candidates per year for spectroscopic follow-up with 85% purity; with the Legacy Survey of Space and Time we anticipate this will rise to more than $$\sim {10}^{3}$$ events per year.more » « less
-
dadi-cli: Automated and distributed population genetic model inference from allele frequency spectraAbstract Summarydadi is a popular software package for inferring models of demographic history and natural selection from population genomic data. But using dadi requires Python scripting and manual parallelization of optimization jobs. We developed dadi-cli to simplify dadi usage and also enable straighforward distributed computing. Availability and Implementationdadi-cli is implemented in Python and released under the Apache License 2.0. The source code is available athttps://github.com/xin-huang/dadi-cli. dadi-cli can be installed via PyPI and conda, and is also available through Cacao on Jetstream2https://cacao.jetstream-cloud.org/.more » « less
-
Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,https://doi.org/10.1029/2007ja012416). We also find that plasma ducts can be generated forL‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7).more » « less
-
ABSTRACT We present the most comprehensive catalogue to date of Type I superluminous supernovae (SLSNe), a class of stripped-envelope supernovae (SNe) characterized by exceptionally high luminosities. We have compiled a sample of 262 SLSNe reported through 2022 December 31. We verified the spectroscopic classification of each SLSN and collated an exhaustive data set of ultraviolet, optical, and infrared photometry totalling over 30 000 photometric detections. Using these data, we derive observational parameters such as the peak absolute magnitudes, rise and decline time-scales, as well as bolometric luminosities, temperature, and photospheric radius evolution for all SLSNe. Additionally, we model all light curves using a hybrid model that includes contributions from both a magnetar central engine and the radioactive decay of $$^{56}$$Ni. We explore correlations among various physical and observational parameters, and recover the previously found relation between ejecta mass and magnetar spin, as well as the overall progenitor pre-explosion mass distribution with a peak at $$\approx 6.5$$ M$$_\odot$$. We find no significant redshift dependence for any parameter, and no evidence for distinct subtypes of SLSNe. We find that only a small fraction of SLSNe, $$\lt 3$$ per cent, are best fit with a significant radioactive decay component $$\gtrsim 50$$ per cent. We provide several analytical tools designed to simulate typical SLSN light curves across a broad range of wavelengths and phases, enabling accurate K-corrections, bolometric scaling calculations, and inclusion of SLSNe in survey simulations or future comparison works.more » « less
An official website of the United States government
