skip to main content


Title: Disentangling the Influence of Data Contamination in Growth Curve Modeling: A Median Based Bayesian Approach
Growth curve models (GCMs), with their ability to directly investigate within-subject change over time and between-subject differences in change for longitudinal data, are widely used in social and behavioral sciences. While GCMs are typically studied with the normal distribution assumption, empirical data often violate the normality assumption in applications. Failure to account for the deviation from normality in data distribution may lead to unreliable model estimation and misleading statistical inferences. A robust GCM based on conditional medians was recently proposed and outperformed traditional growth curve modeling when outliers are present resulting in nonnormality. However, this robust approach was shown to perform less satisfactorily when leverage observations existed. In this work, we propose a robust double medians growth curve modeling approach (DOME GCM) to thoroughly disentangle the influence of data contamination on model estimation and inferences, where two conditional medians are employed for the distributions of the within-subject measurement errors and of random effects, respectively. Model estimation and inferences are conducted in the Bayesian framework, and Laplace distributions are used to convert the optimization problem of median estimation into a problem of obtaining the maximum likelihood estimator for a transformed model. A Monte Carlo simulation study has been conducted to evaluate the numerical performance of the proposed approach, and showed that the proposed approach yields more accurate and efficient parameter estimates when data contain outliers or leverage observations. The application of the developed robust approach is illustrated using a real dataset from the Virginia Cognitive Aging Project to study the change of memory ability.  more » « less
Award ID(s):
1951038
NSF-PAR ID:
10418530
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Behavioral Data Science
Volume:
2
Issue:
2
ISSN:
2574-1284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Growth curve models have been widely used to analyse longitudinal data in social and behavioural sciences. Although growth curve models with normality assumptions are relatively easy to estimate, practical data are rarely normal. Failing to account for non‐normal data may lead to unreliable model estimation and misleading statistical inference. In this work, we propose a robust approach for growth curve modelling using conditional medians that are less sensitive to outlying observations. Bayesian methods are applied for model estimation and inference. Based on the existing work on Bayesian quantile regression using asymmetric Laplace distributions, we use asymmetric Laplace distributions to convert the problem of estimating a median growth curve model into a problem of obtaining the maximum likelihood estimator for a transformed model. Monte Carlo simulation studies have been conducted to evaluate the numerical performance of the proposed approach with data containing outliers or leverage observations. The results show that the proposed approach yields more accurate and efficient parameter estimates than traditional growth curve modelling. We illustrate the application of our robust approach using conditional medians based on a real data set from the Virginia Cognitive Aging Project.

     
    more » « less
  2. null (Ed.)
    Growth mixture modeling is a popular analytic tool for longitudinal data analysis. It detects latent groups based on the shapes of growth trajectories. Traditional growth mixture modeling assumes that outcome variables are normally distributed within each class. When data violate this normality assumption, however, it is well documented that the traditional growth mixture modeling mislead researchers in determining the number of latent classes as well as in estimating parameters. To address nonnormal data in growth mixture modeling, robust methods based on various nonnormal distributions have been developed. As a new robust approach, growth mixture modeling based on conditional medians has been proposed. In this article, we present the results of two simulation studies that evaluate the performance of the median-based growth mixture modeling in identifying the correct number of latent classes when data follow the normality assumption or have outliers. We also compared the performance of the median-based growth mixture modeling to the performance of traditional growth mixture modeling as well as robust growth mixture modeling based on t distributions. For identifying the number of latent classes in growth mixture modeling, the following three Bayesian model comparison criteria were considered: deviance information criterion, Watanabe-Akaike information criterion, and leave-one-out cross validation. For the median-based growth mixture modeling and t -based growth mixture modeling, our results showed that they maintained quite high model selection accuracy across all conditions in this study (ranged from 87 to 100%). In the traditional growth mixture modeling, however, the model selection accuracy was greatly influenced by the proportion of outliers. When sample size was 500 and the proportion of outliers was 0.05, the correct model was preferred in about 90% of the replications, but the percentage dropped to about 40% as the proportion of outliers increased to 0.15. 
    more » « less
  3. Summary

    Mixture regression models have been widely used in business, marketing and social sciences to model mixed regression relationships arising from a clustered and thus heterogeneous population. The unknown mixture regression parameters are usually estimated by maximum likelihood estimators using the expectation–maximisation algorithm based on the normality assumption of component error density. However, it is well known that the normality‐based maximum likelihood estimation is very sensitive to outliers or heavy‐tailed error distributions. This paper aims to give a selective overview of the recently proposed robust mixture regression methods and compare their performance using simulation studies.

     
    more » « less
  4. Abstract

    Structured population models are among the most widely used tools in ecology and evolution. Integral projection models (IPMs) use continuous representations of how survival, reproduction and growth change as functions of state variables such as size, requiring fewer parameters to be estimated than projection matrix models (PPMs). Yet, almost all published IPMs make an important assumption that size‐dependent growth transitions are or can be transformed to be normally distributed. In fact, many organisms exhibit highly skewed size transitions. Small individuals can grow more than they can shrink, and large individuals may often shrink more dramatically than they can grow. Yet, the implications of such skew for inference from IPMs has not been explored, nor have general methods been developed to incorporate skewed size transitions into IPMs, or deal with other aspects of real growth rates, including bounds on possible growth or shrinkage.

    Here, we develop a flexible approach to modelling skewed growth data using a modified beta regression model. We propose that sizes first be converted to a (0,1) interval by estimating size‐dependent minimum and maximum sizes through quantile regression. Transformed data can then be modelled using beta regression with widely available statistical tools. We demonstrate the utility of this approach using demographic data for a long‐lived plant, gorgonians and an epiphytic lichen. Specifically, we compare inferences of population parameters from discrete PPMs to those from IPMs that either assume normality or incorporate skew using beta regression or, alternatively, a skewed normal model.

    The beta and skewed normal distributions accurately capture the mean, variance and skew of real growth distributions. Incorporating skewed growth into IPMs decreases population growth and estimated life span relative to IPMs that assume normally distributed growth, and more closely approximate the parameters of PPMs that do not assume a particular growth distribution. A bounded distribution, such as the beta, also avoids the eviction problem caused by predicting some growth outside the modelled size range.

    Incorporating biologically relevant skew in growth data has important consequences for inference from IPMs. The approaches we outline here are flexible and easy to implement with existing statistical tools.

     
    more » « less
  5. Abstract

    We propose a piecewise linear quantile trend model to analyse the trajectory of the COVID-19 daily new cases (i.e. the infection curve) simultaneously across multiple quantiles. The model is intuitive, interpretable and naturally captures the phase transitions of the epidemic growth rate via change-points. Unlike the mean trend model and least squares estimation, our quantile-based approach is robust to outliers, captures heteroscedasticity (commonly exhibited by COVID-19 infection curves) and automatically delivers both point and interval forecasts with minimal assumptions. Building on a self-normalized (SN) test statistic, this paper proposes a novel segmentation algorithm for multiple change-point estimation. Theoretical guarantees such as segmentation consistency are established under mild and verifiable assumptions. Using the proposed method, we analyse the COVID-19 infection curves in 35 major countries and discover patterns with potentially relevant implications for effectiveness of the pandemic responses by different countries. A simple change-adaptive two-stage forecasting scheme is further designed to generate short-term prediction of COVID-19 cumulative new cases and is shown to deliver accurate forecast valuable to public health decision-making.

     
    more » « less