skip to main content

Title: Next‐Generation Energy Harvesting and Storage Technologies for Robots Across All Scales
  more » « less
Award ID(s):
1710922 1930649
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators have been designed for operation on harvested energy. When addressing the instability problems of harvested energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-in-time incoming power under a simple harvesting architecture with no intermediate energy storage. Targeting a more efficient harvesting architecture equipped with both energy storage and energy delivery modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting ReRAM-based accelerator. First, we model the relationships among ReRAM load power, DC-DC converter efficiency, and power failure overhead. Then, a maximum computation progress tracking scheme ( MaxTracker ) is proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes and provides dynamic ReRAM load according to harvesting scenarios. We evaluate MaxTracker over four input power scenarios, and the experimental results show average speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more flexible tuners and thus further boost the system performance. 
    more » « less
  2. Abstract

    Vibration‐based energy‐harvesting technology, as an alternative power source, represents one of the most promising solutions to the problem of battery capacity limitations in wearable and implantable electronics, in particular implantable biomedical devices. Four primary energy transduction mechanisms are reviewed, namely piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms for vibration‐based energy harvesters. Through generic modeling and analyses, it is shown that various approaches can be used to tune the operation bandwidth to collect appreciable power. Recent progress in biomechanical energy harvesters is also shown by utilizing various types of motion from bodies and organs of humans and animals. To conclude, perspectives on next‐generation energy‐harvesting systems are given, whereby the ultimate intelligent, autonomous, and tunable energy harvesters will provide a new energy platform for electronics and wearable and implantable medical devices.

    more » « less
  3. This paper presents a multi-source energy harvesting system for vibration, thermal, and solar energy from automobiles, which aims to power a micro controller (MCU) for cryptography. Each building block adopts a maximum power extraction scheme to match the unique characteristic of the energy source. Resistive impedance matching with a buck-boost converter is adopted for vibration and thermal energy harvesting, and maximum power point tracking for solar energy harvesting. The proposed system provides two regulated voltages, 3.3 V and 5 V, to power an MCU. An energy level indicator indicates the current energy level stored in the storage device. The MCU processes a cryptography algorithm accordingly based on the current energy level. The system is able to cold start, i.e., even if the storage device is drained completely, it can start. 
    more » « less
  4. Abstract

    The Internet of Everything (IoE), which aims to realize information exchange and communications for anything with the Internet, has revolutionized our modern world. Serving as the driving force for devices in the IoE network, power supply systems play a fundamental role in the development of the IoE. However, due to the complexity, multifunctionality and wide‐scale deployment of diverse applications, power supply systems face great challenges, including distribution, connection, charging technologies, and management. In this review, some challenges and advances in the development of both power supply systems and their units are presented. In the overall system‐level field, establishing sustainable and maintenance‐free power supply systems through wireless connections, efficient power management and integrated energy harvesting and storage systems is highlighted. Additionally, the main performance metrics of power supply units are discussed, including energy density, service life, and self‐power ability. In addition, some directions of power quality assessment for both the system and unit levels of power supply systems are presented, aiming to provide insight into the future development of high‐performance power supply systems for the IoE.

    more » « less
  5. We created innovative supercapacitive micro-bio-photovoltaic systems (or micro-BPVs) with maximized bacterial photoelectrochemical activities in a wellcontrolled, tightly enclosed micro-chamber. The technique was based on a 3-D doublefunctional bio-anode concurrently exhibiting bio-electrocatalytic and charge-storage features so that it offers the high-energy harvesting function of BPVs and the highpower operation of an internal supercapacitor for charging and discharging. During the charging-discharging operation with 3 min of charging and 2 min of discharging, our device produced a maximum power density of 19.12 μW/cm2 and current density 212.09 μA/cm2, a performance significantly greater than that of the continuous discharging mode. This work creates a microscale hybrid energy-harvesting device that combines a biological photovoltaic device and a supercapacitor for self-sustainable field applications. 
    more » « less