skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An archive of Lake Superior temperature and current measurements, 2005–2020
Abstract Since 2005, investigators at the University of Minnesota, Duluth's Large Lakes Observatory have been maintaining subsurface moorings and surface buoys in Lake Superior to study thermal structure and currents throughout the water column and throughout the year. A single site has been continuously occupied for over 17 years as of the writing of this manuscript, another 10 sites have been occupied for multiple years, and for 3 months in summer 2017 an intensive field campaign occupied 12 sites simultaneously in western Lake Superior. All of these data are available on a publicly accessible archival site hosted by the University of Minnesota.  more » « less
Award ID(s):
1635560 1829895
PAR ID:
10418808
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
8
Issue:
4
ISSN:
2378-2242
Page Range / eLocation ID:
p. 595-602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Lamoka Lake and Scaccia sites in present-day New York have played important roles in the development of archaeology in New York, and in the case of Lamoka Lake, in eastern North America. Lamoka Lake is the type site for the “Archaic” period in eastern North American culture history and the “Late Archaic” “Lamoka phase” in New York culture history. The Scaccia site is the largest “Early Woodland” “Meadowood phase” site in New York and has the earliest evidence for pottery and agriculture crop use in the state. Lamoka Lake has been dated to 2500 BC based on a series of solid carbon and gas-proportional counting radiometric dates on bulk wood charcoal obtained in the 1950s and 1960s. Scaccia has been dated to 870 BC based on a single uncalibrated radiometric date obtained on bulk charcoal in the early 1970s. As a result, the ages of these important sites need to be refined. New AMS dates and Bayesian analyses presented here place Lamoka Lake at 2962–2902 BC (68.3% highest posterior density [hpd])) and Scaccia at 1049–838 BC (68.3% hpd). 
    more » « less
  2. Since 2002, the National Center for Earth-Surface dynamics has collaborated with the Fond du Lac Band of Lake Superior Chippewa, the Fond du Lac Tribal and Community College, the University of Minnesota, and other partner institutions to develop programs aimed at supporting Native American participation in science, technology, engineering, and mathematics (STEM) fields, and especially in the Earth and Environmental Sciences. These include the gidakiimanaaniwigamig math and science camps for students in kindergarten through 12th grade, the Research Experience for Undergraduates on Sustainable Land and Water Resources, which takes place on two native reservations, and support for new majors at tribal colleges. All of these programs have a common focus on collaboration with communities, place-based education, community-inspired research projects, a focus on traditional culture and language, and resource management on reservations. Strong partnerships between university, tribal college, and Native American reservation were a foundation for success, but took time and effort to develop. This paper explores steps towards effective partnerships that support student success in STEM via environmental education. 
    more » « less
  3. The 2021 airborne Light Detection and Ranging (LiDAR) data was acquired by the University of Alaska Geophysical Institute for an National Science Foundation (NSF) funded project focused on catastrophic arctic lake drainage in northern Alaska. The data was acquired at six key field study sites that included drained lake basins north of Teshekpuk Lake, perched lakes on the Ikpikpuk River Delta, tapped lakes at Drew Point, the large drained lake basin complex at the Pik Dunes, a lake and drained lake basin complex at the Anaktuvuk River tundra fire site, and the cascading lake drainage events along the Chipp and Alaktak Rivers. This dataset encompasses 300 square kilometers of terrestrial and aquatic tundra settings in northern Alaska. The data were acquired between 22 July and 27 July 2021 at an estimated density of 16-20 points per square meter (ppm) using an Reigl VQ-580ii LiDAR system flying at an altitude of 750 meters above ground level. The vertical accuracy of this dataset is 10 centimeters. The data have been post-processed to WGS84 UTM Zone 5 North in Ellipsoid Heights (meters). 
    more » « less
  4. ABSTRACT Global climate change phenomena are amplified in Arctic regions, driving rapid changes in the biota. Here, we examine changes in plant community structure over more than 30 years at two sites in arctic Alaska, USA, Imnavait Creek and Toolik Lake, to understand long‐term trends in tundra response to changing climate. Vegetation cover was sampled every 4–7 years on permanent 1 m2plots spanning a 1 km2grid using a point‐frame. The vascular plant canopies progressively closed at both locations. Canopy cover, defined here as an encounter of a vascular plant above the ground surface, increased from 63% to 91% at Imnavait Creek and from 63% to 89% at Toolik Lake. Both sites showed steady increases in maximum canopy height, increasing by approximately 50% (8 cm). While cover and height increased to some extent for all vascular plant growth forms, deciduous shrubs and graminoids changed the most. For example, at Imnavait Creek the cover of graminoids more than tripled (particularly in wet meadow plots), increasing by 237%. At Toolik Lake the cover of deciduous shrubs more than doubled (particularly in moist acidic plots), increasing by 145%. Despite the steady closing of the plant canopy, cryptogams (lichens and mosses) persisted; in fact, the cover of lichens increased. These results call into question the dominant dogma that cryptogams will decline with increases in vascular plant abundance and demonstrate the resilience of these understory plants. In addition to overall cover, the diversity of vascular plants increased at one site (Imnavait Creek). In contrast to much of the Arctic, summer air temperatures in the Toolik Lake region have not significantly increased over the 30+ year sampling period; however, winter temperatures increased substantially. Changes in vegetation community structure at Imnavait Creek and Toolik Lake are likely the result of winter warming. 
    more » « less
  5. Abstract For much of modern human history (roughly the last 200,000 years), global sea levels have been lower than present. As such, it is hardly surprising that archaeologists increasingly are looking to submarine environments to address some of their most pressing questions. While underwater archaeology is most commonly associated with shipwrecks, the search for submerged prehistoric sites presents an entirely different set of challenges, even though many of the same technologies are used. For Great Lakes archaeologists, the problem is how best to adapt the range of available seafloor mapping and testing techniques to the problem of identifying prehistoric sites, while operating with smaller vessels and the limited budgets available to “normal” archaeology. In this paper, we briefly describe the approach we have developed at the University of Michigan for identifying 9,000-year-old caribou hunting sites beneath Lake Huron. The research employs a layered research design integrating sonars, remotely operated vehicles (ROVs), and scuba divers at progressively finer scales to discover and investigate these important new archaeological sites. 
    more » « less