skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abstract representation of the SMGTJ equation under rough boundary controls: Optimal interior regularity
We consider the linearized third order SMGTJ equation defined on a sufficiently smooth boundary domain in and subject to either Dirichlet or Neumann rough boundary control. Filling a void in the literature, we present a direct general system approach based on the vector state solution {position, velocity, acceleration}. It yields, in both cases, an explicit representation formula: input solution, based on the s.c. group generator of the boundary homogeneous problem and corresponding elliptic Dirichlet or Neumann map. It is close to, but also distinctly and critically different from, the abstract variation of parameter formula that arises in more traditional boundary control problems for PDEs L‐T.6. Through a duality argument based on this explicit formula, we provide a new proof of the optimal regularity theory: boundary control {position, velocity, acceleration} with low regularity boundary control, square integrable in time and space.  more » « less
Award ID(s):
2205508
PAR ID:
10418850
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Mathematical Methods in the Applied Sciences
ISSN:
0170-4214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $$\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $$\end{document}, which, moreover, in the canonical case \begin{document}$$ \gamma = 0 $$\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$$ \gamma = 0 $$\end{document} or \begin{document}$$ 0 \neq \gamma \in L^{\infty}(\Omega) $$\end{document}, since \begin{document}$$ \gamma \neq 0 $$\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$$ g $$\end{document} "smoother" than \begin{document}$$ L^2(\Sigma) $$\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$$ L^2(0, T;L^2(\Gamma)) $$\end{document}, and [44] for control less regular in space than \begin{document}$$ L^2(\Gamma) $$\end{document}$. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2]. 
    more » « less
  2. We consider an unconstrained tangential Dirichlet boundary control problem for the Stokes equations with an $ L^2 $ penalty on the boundary control.  The contribution of this paper is twofold.  First, we obtain well-posedness and regularity results for the tangential Dirichlet control problem on a convex polygonal domain.  The analysis contains new features not found in similar Dirichlet control problems for the Poisson equation; an interesting result is that the optimal control has higher local regularity on the individual edges of the domain compared to the global regularity on the entire boundary.  Second, we propose and analyze a hybridizable discontinuous Galerkin (HDG) method to approximate the solution.  For convex polygonal domains, our theoretical convergence rate for the control is optimal with respect to the global regularity on the entire boundary.  We present numerical experiments to demonstrate the performance of the HDG method. 
    more » « less
  3. Abstract We develop a linearized boundary control method for the inverse boundary value problem of determining a potential in the acoustic wave equation from the Neumann-to-Dirichlet map. When the linearization is at the zero potential, we derive a reconstruction formula based on the boundary control method and prove that it is of Lipschitz-type stability. When the linearization is at a nonzero potential, we prove that the problem is of Hölder-type stability in two and higher dimensions. The proposed reconstruction formula is implemented and evaluated using several numerical experiments to validate its feasibility. 
    more » « less
  4. Some linear integro-differential operators have old and classical representations as the Dirichlet-to-Neumann operators for linear elliptic equations, such as the 1/2-Laplacian or the generator of the boundary process of a reflected diffusion. In this work, we make some extensions of this theory to the case of a nonlinear Dirichlet-to-Neumann mapping that is constructed using a solution to a fully nonlinear elliptic equation in a given domain, mapping Dirichlet data to its normal derivative of the resulting solution. Here we begin the process of giving detailed information about the Lévy measures that will result from the integro-differential representation of the Dirichlet-to-Neumann mapping. We provide new results about both linear and nonlinear Dirichlet-to-Neumann mappings. Information about the Lévy measures is important if one hopes to use recent advancements of the integro-differential theory to study problems involving Dirichlet-to-Neumann mappings. 
    more » « less
  5. This work studies the initial-boundary value problem (ibvp) of the two-dimensional nonlinear Schrödinger equation on the half-plane with initial data in Sobolev spaces and Neumann or Robin boundary data in appropriate Bourgain spaces. It establishes well-posedness in the sense of Hadamard by using the explicit solution formula for the forced linear ibvp obtained via Fokas’s unified transform, and a contraction mapping argument. 
    more » « less