skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using multi‐task experiments to test principles of hippocampal function
Abstract Investigations of hippocampal functions have revealed a dizzying array of findings, from lesion‐based behavioral deficits, to a diverse range of characterized neural activations, to computational models of putative functionality. Across these findings, there remains an ongoing debate about the core function of the hippocampus and the generality of its representation. Researchers have debated whether the hippocampus's primary role relates to the representation of space, the neural basis of (episodic) memory, or some more general computation that generalizes across various cognitive domains. Within these different perspectives, there is much debate about the nature of feature encodings. Here, we suggest that in order to evaluate hippocampal responses—investigating, for example, whether neuronal representations are narrowly targeted to particular tasks or if they subserve domain‐general purposes—a promising research strategy may be the use of multi‐task experiments, or more generally switching between multiple task contexts while recording from the same neurons in a given session. We argue that this strategy—when combined with explicitly defined theoretical motivations that guide experiment design—could be a fruitful approach to better understand how hippocampal representations support different behaviors. In doing so, we briefly review key open questions in the field, as exemplified by articles in this special issue, as well as previous work using multi‐task experiments, and extrapolate to consider how this strategy could be further applied to probe fundamental questions about hippocampal function.  more » « less
Award ID(s):
1945230
PAR ID:
10418999
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hippocampus
Volume:
33
Issue:
5
ISSN:
1050-9631
Page Range / eLocation ID:
p. 646-657
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The human medial temporal lobe (MTL) plays a crucial role in recognizing visual objects, a key cognitive function that relies on the formation of semantic representations. Nonetheless, it remains unknown how visual information of general objects is translated into semantic representations in the MTL. Furthermore, the debate about whether the human MTL is involved in perception has endured for a long time. To address these questions, we investigated three distinct models of neural object coding—semantic coding, axis-based feature coding, and region-based feature coding—in each subregion of the MTL, using high-resolution fMRI in two male and six female participants. Our findings revealed the presence of semantic coding throughout the MTL, with a higher prevalence observed in the parahippocampal cortex (PHC) and perirhinal cortex (PRC), while axis coding and region coding were primarily observed in the earlier regions of the MTL. Moreover, we demonstrated that voxels exhibiting axis coding supported the transition to region coding and contained information relevant to semantic coding. Together, by providing a detailed characterization of neural object coding schemes and offering a comprehensive summary of visual coding information for each MTL subregion, our results not only emphasize a clear role of the MTL in perceptual processing but also shed light on the translation of perception-driven representations of visual features into memory-driven representations of semantics along the MTL processing pathway. Significance StatementIn this study, we delved into the mechanisms underlying visual object recognition within the human medial temporal lobe (MTL), a pivotal region known for its role in the formation of semantic representations crucial for memory. In particular, the translation of visual information into semantic representations within the MTL has remained unclear, and the enduring debate regarding the involvement of the human MTL in perception has persisted. To address these questions, we comprehensively examined distinct neural object coding models across each subregion of the MTL, leveraging high-resolution fMRI. We also showed transition of information between object coding models and across MTL subregions. Our findings significantly contributes to advancing our understanding of the intricate pathway involved in visual object coding. 
    more » « less
  2. The hippocampus is thought to enable the encoding and retrieval of ongoing experience, the organization of that experience into structured representations like contexts, maps, and schemas, and the use of these structures to plan for the future. A central goal is to understand what the core computations supporting these functions are, and how these computations are realized in the collective action of single neurons. A potential access point into this issue is provided by ‘splitter cells’, hippocampal neurons that fire differentially on the overlapping segment of trajectories that differ in their past and/or future. However, the literature on splitter cells has been fragmented and confusing, owing to differences in terminology, behavioral tasks, and analysis methods across studies. In this review, we synthesize consistent findings from this literature, establish a common set of terms, and translate between single-cell and ensemble perspectives. Most importantly, we examine the combined findings through the lens of two major theoretical ideas about hippocampal function: representation of temporal context and latent state inference. We find that unique signature properties of each of these models are necessary to account for the data, but neither theory, by itself, explains all of its features. Specifically, the temporal gradedness of the splitter signal is strong support for temporal context, but is hard to explain using state models, while its flexibility and task-dependence is naturally accounted for using state inference, but poses a challenge otherwise. These theories suggest a number of avenues for future work, and we believe their application to splitter cells is a timely and informative domain for testing and refining theoretical ideas about hippocampal function. 
    more » « less
  3. Introduction The notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning. Results We found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training. Discussion Together, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces. 
    more » « less
  4. null (Ed.)
    GADTs can be represented either as their Church encodings a la Atkey, or as fixpoints a la Johann and Polonsky. While a GADT represented as its Church encoding need not support a map function satisfying the functor laws, the fixpoint representation of a GADT must support such a map function even to be well-defined. The two representations of a GADT thus need not be the same in general. This observation forces a choice of representation of data types in languages supporting GADTs. In this paper we show that choosing whether to represent data types as their Church encodings or as fixpoints determines whether or not a language supporting GADTs can have parametric models. This choice thus has important consequences for how we can program with, and reason about, these advanced data types. 
    more » « less
  5. GADTs can be represented either as their Church encodings a la Atkey, or as fixpoints a la Johann and Polonsky. While a GADT represented as its Church encoding need not support a map function satisfying the functor laws, the fixpoint representation of a GADT must support such a map function even to be well-defined. The two representations of a GADT thus need not be the same in general. This observation forces a choice of representation of data types in languages supporting GADTs. In this paper we show that choosing whether to represent data types as their Church encodings or as fixpoints determines whether or not a language supporting GADTs can have parametric models. This choice thus has important consequences for how we can program with, and reason about, these advanced data types. 
    more » « less