skip to main content

Title: Meta‐analysis reveals drivers of restoration success for oysters and reef community

Restoration aims to reverse the global declines of foundation species, but it is unclear how project attributes, the physical setting, and antecedent conditions affect restoration success. In coastal seas worldwide, oyster reef restoration is increasing to counter historical habitat destruction and associated declines in fisheries production and biodiversity. Yet, restoration outcomes are highly variable and the factors that enhance oyster production and nekton abundance and diversity on restored reefs are unresolved. To quantify the drivers of oyster restoration success, we used meta‐analysis to synthesize data from 158 restored reefs paired with unstructured habitats along the United States Gulf and Atlantic coasts. The average recovery of oyster production was 65% greater in subtidal (vs. intertidal) zones, 173% greater in polyhaline (vs. mesohaline) environments and increased with tidal range, demonstrating that physical conditions can strongly influence the restoration success of foundation species. Additionally, restoration increased the relative abundance and richness of nektonic fishes and invertebrates over time as reefs aged (at least 8 years post‐construction). Thus, the restoration benefits for provisioning habitat and enhancing biodiversity accrue over time, highlighting that restoration projects need multiple years to maximize ecosystem functions. Furthermore, long‐term monitoring of restored and control sites is needed to assess restoration outcomes and associated drivers. Last, our work reveals data constraints for several potential drivers of restoration outcomes, including reef construction material, reef dimensions, harvest pressure and disease prevalence. More experimental and observational studies are needed to target these factors and measure them with consistent methods across studies. Our findings indicate that the assisted recovery of foundation species yields several enhancements to ecosystem services, but such benefits are mediated by time and environmental conditions.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Restoration of foundation species promises to reverse environmental degradation and return lost ecosystem services, but a lack of standardized evaluation across projects limits understanding of recovery, especially in marine systems. Oyster reefs are restored to reverse massive global declines and reclaim valuable ecosystem services, but the success of these projects has not been systematically and comprehensively quantified. We synthesized data on ecosystem services associated with oyster restoration from 245 pairs of restored and degraded reefs and 136 pairs of restored and reference reefs across 3500 km of U.S. Gulf of Mexico and Atlantic coastlines. On average, restoration was associated with a 21‐fold increase in oyster production (mean log response ratio = 3.08 [95% confidence interval: 2.58–3.58]), 34–97% enhancement of habitat provisioning (mean community abundance = 0.51 [0.41–0.61], mean richness = 0.29 [0.19–0.39], and mean biomass = 0.69 [0.39–0.99]), 54% more nitrogen removal (mean = 0.43 [0.13–0.73]), and 89–95% greater sediment nutrients (mean = 0.67 [0.27–1.07]) and organic matter (mean = 0.64 [0.44–0.84]) relative to degraded habitats. Moreover, restored reefs matched reference reefs for these ecosystem services. Our results support the continued and expanded use of oyster restoration to enhance ecosystem services of degraded coastal systems and match many functions provided by reference reefs.

    more » « less
  2. Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders.

    more » « less
  3. Restoration of degraded estuarine oyster reefs typically involves deploying recycled oyster shell. In low‐salinity, low‐predation areas of estuaries, high‐volume shell deployments are known to improve flow conditions and thus oyster survival and growth. It is also hypothesized that the physical structure of restored reefs could suppress foraging by oyster predators in high‐salinity, high‐predation zones. That hypothesis is untested. Given limited resources, it is important to determine how much shell is needed for successful restoration and whether there are diminishing returns in shell addition. In Apalachicola Bay, Florida, we manipulated shell volume on an oyster reef to create three 0.4 ha areas of low (no shell addition), moderate (153 m3shell), and high (306 m3shell) habitat structure. We repeated experiments and surveys over 2 years to determine if restoration success increased with habitat structure. Predation on oysters was greater on the non‐shelled area than on the reshelled reefs, but similar between the two reshelled reefs. Oyster larval supply did not differ among the reef areas, but by the end of the experiment, oyster density (per unit area) increased quadratically with habitat structure, plateauing at high levels of structure. Model selection indicated that the most parsimonious explanation for these patterns was that increased habitat structure reduced predation and increased overall recruitment, but that the higher reshelling treatment did not have better outcomes than moderate reshelling. Thus, restoration could be optimized by deploying a moderate amount of shell per unit area.

    more » « less
  4. Restoration is accelerating to reverse global declines of key habitats and recover lost ecosystem functions, particularly in coastal ecosystems. However, there is high uncertainty about the long-term capacity of restored ecosystems to provide habitat and increase biodiversity and the degree to which these ecosystem services are mediated by spatial and temporal environmental variability. We addressed these gaps by sampling fishes biannually for 5–7 years (2012–2018) at 16 sites inside and outside a rapidly expanding restored seagrass meadow in coastal Virginia (USA). Despite substantial among-year variation in abun-dance and species composition, seine catches in restored seagrass beds were consistently larger (6.4 times more fish, p<0.001) and more speciose (2.6 times greater species richness, p<0.001; 3.1 times greater Hill–Shannon diversity, p=0.03) than seine catches in adjacent unvegetated areas. Catches were particularly larger during summer than autumn(p<0.01). Structural equation modeling revealed that depth and water residence time interacted to control seagrass presence, leading to higher fish abundance and richness in shallow, well-flushed areas that supported seagrass. Together, our results indicate that seagrass restoration yields large and consistent benefits for many coastal fishes, but that restoration and its benefits are sensitive to the dynamic seascapes in which restoration is conducted. Consideration of how seascape-scale environmental variability affects the success of habitat restoration and subsequent ecosystem function will improve restoration outcomes and the provisioning of ecosystem services. 
    more » « less
  5. Coastal and estuarine habitats that provide crucial nursery areas for many economically and ecologically important fish species are in decline. Restoration of benthic habitats can improve fish populations, biomass, and feeding opportunities, but there is limited research on how restoration impacts growth and survival with ontogeny. To address this knowledge gap, here we examine the biometrics (size, biomass, and body condition), recruitment, size structure, and trophic shifts of a sportfish (mangrove snapper,Lutjanus griseus) at restored oyster reefs and stabilized living shorelines to better understand how fish use restored habitats as they grow. Biomass and body condition ofL. griseusjuveniles and subadults, and post‐settlement recruitment, at restored/stabilized sites was similar, and in some cases greater than natural sites, correlating with benthic habitat, reef location, and lunar phase at oyster reefs. Living shorelines exhibited greater recruitment potential, while oyster reefs supported more juveniles and subadults, as evidenced by differences in fish size and biomass between habitats. Dietary overlap implies subadultL. griseuslikely foraged across habitats more than juveniles, while there was greater diet similarity within habitats. Furthermore, ontogenetic shifts also occurred within oyster reef habitats, highlighting the importance of quality habitat to support various sportfish life stages, which can be achieved through restoration. These findings suggest life history attributes can be indicators of habitat restoration success, and specifically provide actionable science to guide the development of more effective strategies for restoring inshore nursery habitats and thus augment production of offshore reef fisheries.

    more » « less