skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Seasonal and Longitudinal Variations in Suspended Load Connectivity Between River Channels and Their Margins
Abstract

Input of organic matter into stream channels is the primary energy source for headwater ecosystems and ultimately carbon to the oceans and hence is an important component of the global carbon cycle. Here, we quantify organic‐rich fine sediment mobilization, transport, and storage in a Strahler fourth‐order stream during individual intermediate‐sized storm events. By combining measurements of fallout radionuclides (FRNs)7Be and210Pb and stable water isotopes with a conceptual model of suspended load trapping by channel margins, we find that the channel bed was consistently a source of suspended load to the channel margins. Relative to storage on the channel margins, suspended load export increased through the spring and summer, perhaps related to the in‐channel decomposition of organic debris as indicated by its FRN exposure age and changing bulk δ13C composition. Trapping of suspended load by riparian margins limits sediment transport distances, which, given sufficient discharge to fully suspend the load, is nearly independent of stream discharge for sub‐bankfull discharges. Limited data indicate that the fractional size of the channel margins where trapping occurs decreases with increasing watershed area. Increasing transport length and decreasing fractional margin area with increasing watershed area results in a systematic downstream decoupling of the channel from local terrestrial organic matter exchange. These findings provide a framework for understanding suspended load dynamics in formerly glaciated regions where sediment production and fluxes are generally low and thus the annual input of organic debris is a major component of suspended load budget.

 
more » « less
NSF-PAR ID:
10419050
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spatial complexity impacts the resilience of river ecosystems by mediating processes that control the sources and sinks of sediment and organic material. Using four independent geochemical tracers and three morphometric indices, we show that downstream spatial gradients in stream power (Ω) predict storage of material in the channels and margins and/or floodplains. A field test in a 48 km2 watershed demonstrates that reaches with downstream decreases in Ω coincide with wider floodplains and elevated inventories of 137Cs, 210Pbex (ex—excess), and organic matter in locations of the ~3 to 20 yr floodplain. In contrast, reaches with downstream increases in Ω coincide with narrower floodplains and decreased inventories of 137Cs, 210Pbex, and organic matter. The occurrence of in-channel bedrock exposures and the activity of short-lived 7Be in within-channel sediments also correlate with downstream Ω gradients, demonstrating a link, over both short and long time scales, between withinchannel processes and floodplain-forming processes. The combined geochemical and physical characteristics demonstrate the importance of downstream gradients in sediment transport, characterized by downstream changes in stream power rather than at-a-point stream power, in determining spatial complexity in carbon and sediment storage at intermediate scales (102 to 103 m) in river systems. 
    more » « less
  2. Abstract

    The flow of organic matter (OM) along rivers and retention within floodplains contributes significantly to terrestrial carbon storage and ecosystem function. The storage and cycling of OM largely depend upon hydrogeomorphic characteristics of streams and valleys, including channel geometry and the connectivity of water across and within the floodplain. To examine the role of river morphology on carbon dynamics in mountain streams, we (a) quantify organic carbon (OC) storage in fine sediment, litter, and wood along 24 forested gravel‐bed stream reaches in the Rocky Mountains of CO, USA, (b) examine morphological factors that regulate sediment and OC storage (e.g., channel width, slope, logjams), and (c) utilize fluorescence spectroscopy to examine how the composition of fluorescent dissolved OM in surface water and floodplain fine sediment are influenced by channel morphology. Multivariate regression of the study reaches, which have varying degrees of confinement, slope, and elevation, indicates that OC storage per area is higher in less confined valleys, in lower gradient stream reaches, and at higher elevations. Within unconfined valleys, limited storage of fine sediment and greater microbial transformation of OM in multithread channel reaches decreases OC storage per area (252 ± 39 Mg C ha−1) relative to single‐thread channel reaches (346 ± 177 Mg C ha−1). Positive feedbacks between channel morphology and persistent channel‐spanning logjams that divert flow into multiple channels may limit the aggradation of floodplain fine sediment. Although multithread stream reaches are less effective OC reservoirs, they are hotspots for OM decomposition and provide critical resources to downstream food webs.

     
    more » « less
  3. Abstract

    A mountain watershed network model is presented for use in decadal to centurial estimation of source‐to‐sink sediment dynamics. The model requires limited input parameters and can be effectively applied over spatial scales relevant to management of reservoirs, lakes, streams, and watersheds (1–100 km2). The model operates over a connected stream network of Strahler‐ordered segments. The model is driven by streamflow from a physically based hydrology model and hillslope sediment supply from a stochastic mass wasting algorithm. For each daily time step, segment‐scale sediment mass balance is computed using bedload and suspended load transport equations. Sediment transport is partitioned between grain size fractions for bedload as gravel and sand, and for suspended load as sand and mud. Bedload and suspended load can deposit and re‐entrain at each segment. We demonstrated the model in the Elwha River Basin, upstream of the former Glines Canyon dam, over the dam's historic 84‐year lifespan. The model predicted the lifetime reservoir sedimentation volume within the uncertainty range of the measured volume (13.7–18.5 million m3) for 25 of 28 model instances. Gravel, sand, and mud fraction volumes were predicted within measurement uncertainty ranges for 18 model instances. The network model improved the prediction of sediment yields compared to at‐a‐station sediment transport capacity relations. The network model also provided spatially and temporally distributed information that allowed for inquiry and understanding of the physical system beyond the sediment yields at the outlet. This work advances cross‐disciplinary and application‐oriented watershed sediment yield modeling approaches.

     
    more » « less
  4. Abstract

    The Tocantins River contributes ∼5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ∼1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water.predominated the dissolved inorganic nitrogen pool, followed by, and, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72 × 106 t yr−1, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO2derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology.

     
    more » « less
  5. The water discharge and sediment load have been increasingly altered by climate change and human activities in recent decades. For the Pearl River, however, long-term variations in the sediment regime, especially in the last decade, remain poorly known. Here we updated knowledge of the temporal trends in the sediment regime of the Pearl River at annual, seasonal and monthly time scales from the 1950s to 2020. Results show that the annual sediment load and suspended sediment concentration (SSC) exhibited drastically decreased, regardless of water discharge. Compared with previous studies, we also found that sediment load and SSC reached a conspicuous peak in the 1980s, and showed a significant decline starting in the 2000s and 1990s, respectively. In the last decade, however, water discharge and sediment load showed slightly increasing trends. At the seasonal scale, the wet-season water discharge displays a decreasing trend, while the dry-season water discharge is increasing. At the monthly scale, the flood seasons in the North and East Rivers typically occur one month earlier than that in the West River due to the different precipitation regimes. Precipitation was responsible for the long-term change of discharge, while human activities (e.g. dam construction and land use change) exerted different effects on the variations in sediment load among different periods. Changes in the sediment regime have exerted substantial influences on downstream channel morphology and saltwater intrusion in the Greater Bay Area. Our study proposes a watershed-based solution, and provides scientific guidelines for the sustainable development of the Greater Bay Area. 
    more » « less