skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pnictogen Interactions with Nitrogen Acceptors
Abstract Stabilizing nitrogen pnictogen bond interactions were measured using molecular rotors. Intramolecular C=O⋅⋅⋅N interactions were formed in the bond rotation transition states which lowered the rotational barriers and increased the rates of rotation, as measured by EXSY NMR. The pnictogen interaction energies show a very strong correlation with the positive electrostatic potential on nitrogen, which was consistent with a strong electrostatic component. In contrast, the NBO perturbation and pyramidalization analyses show no correlation, suggesting that the orbital‐orbital component is minor. The strongest C=O⋅⋅⋅N pnictogen interactions were comparable to C=O⋅⋅⋅C=O interactions and were stronger than C=O⋅⋅⋅Ph interactions, when measured using the sameN‐phenylimide rotor system. The ability of the nitrogen pnictogen interactions to stabilize transition states and enhance kinetic processes demonstrates their potential in catalysis and reaction design.  more » « less
Award ID(s):
2003889
PAR ID:
10419070
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
28
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Non‐covalent chalcogen bond (ChB) interactions have found utility in many fields, including catalysis, organic semiconductors, and crystal engineering. In this study, the transition stabilizing effects of ChB interactions of oxygen and sulfur were experimentally measured using a series of molecular rotors. The rotors were designed to form ChB interactions in their bond rotation transition states. This enabled the kinetic influences to be assessed by monitoring changes in the rotational barriers. Despite forming weaker ChB interactions, the smaller chalcogens were able to stabilize transition states and had measurable kinetic effects on the rotational barriers. Sulfur stabilized the bond rotation transition state by as much as −7.2 kcal/mol without electron‐withdrawing groups. The key was to design a system where the sulfur ‐hole was aligned with the lone pairs of the chalcogen bond acceptor. Oxygen rotors also could form transition state stabilizing ChB interactions but required electron‐withdrawing groups. For both oxygen and sulfur ChB interactions, a strong correlation was observed between transition state stabilizing abilities and electrostatic potential (ESP) of the chalcogen, providing a useful predictive parameter for the rational design of future ChB systems. 
    more » « less
  2. Abstract A new empirical electrophilicity reactivity parameter,ERB, was developed based on the rotational barriers of a series ofN‐phenylimide molecular rotors containing various electrophilic groups. In the bond rotation transition state, these electrophilic groups form close contact with an electronegative C═O oxygen. Thus, strong electrophilic groups significantly lowered the rotational barrier. As a result, the rotational barriers were inversely correlated with the strengths of the electrophiles. The rotational barriers were measured by dynamic NMR (EXSY), enabling the quantification across a wide range of types of electrophiles. Computational analysis confirmed that the observed variations arose from intramolecular interactions in the transition state, where the C═O oxygen served as a probe of both the electrophilic group's electrostatic potential and steric accessibility. By simultaneously capturing attractive and repulsive transition state interactions,ERBprovides an effective means of predicting electrophilicity and reactivity trends across a broad range of electrophiles and reaction types. The utility ofERBwas initially validated using a series of rotors containing Michael addition electrophiles, followed by broader application to a diverse array of reactions involvingsp3andsp2electrophiles, including SN2, SNAr, Pd‐oxidative addition, and Sonogashira reactions. 
    more » « less
  3. Abstract Benzylic and allylic electrophiles are well known to react faster in SN2 reactions than aliphatic electrophiles, but the origins of this enhanced reactivity are still being debated. Galabov, Wu, and Allen recently proposed that electrostatic interactions in the transition state between the nucleophile (Nu) and the sp2carbon (C2) adjacent to the electrophilic carbon (C1) play a key role. To test this secondary electrostatic hypothesis, molecular rotors were designed that form similar through‐space electrostatic interactions with C2 in their bond rotation transition states without forming bonds to C1. This largely eliminates the alternative explanation of stabilizing conjugation effects between C1 and C2 in the transition state. The rotor barriers were strongly correlated with the experimentally measured SN2 free energy. Notably, rotors where C2 was sp2or sp‐hybridized had barriers that were consistently 0.5–2.0 kcal mol−1lower than those for rotors where C2 was sp3‐hybridized. Computational studies of atomic charges were consistent with the formation of stabilizing secondary electrostatic interactions. Further confirmation came from observing the benzylic effect in rotors where the first atom was varied, including oxygen, sulfur, nitrogen, and sp2‐carbon. In summary, these studies provided strong experimental support for the role of secondary electrostatic interactions in the SN2 reaction. 
    more » « less
  4. The ability to control molecular-scale motion using electrostatic interactions was demonstrated using an N -phenylsuccinimide molecular rotor with an electrostatic pyridyl-gate. Protonation of the pyridal-gate forms stabilizing electrostatic interactions in the transition state of the bond rotation process that lowers the rotational barrier and increases the rate of rotation by two orders of magnitude. Molecular modeling and energy decomposition analysis confirm the dominant role of attractive electrostatic interactions in lowering the bond rotation transition state. 
    more » « less
  5. Abstract What happens when a C−H bond is forced to interact with unpaired pairs of electrons at a positively charged metal? Such interactions can be considered as “contra‐electrostatic” H‐bonds, which combine the familiar orbital interaction pattern characteristic for the covalent contribution to the conventional H‐bonding with an unusual contra‐electrostatic component. While electrostatics is strongly stabilizing component in the conventional C−H⋅⋅⋅X bonds where X is an electronegative main group element, it is destabilizing in the C−H⋅⋅⋅M contacts when M is Au(I), Ag(I), or Cu(I) of NHC−M−Cl systems. Such remarkable C−H⋅⋅⋅M interaction became experimentally accessible within (α‐ICyDMe)MCl, NHC‐Metal complexes embedded into cyclodextrins. Computational analysis of the model systems suggests that the overall interaction energies are relatively insensitive to moderate variations in the directionality of interaction between a C−H bond and the metal center, indicating stereoelectronic promiscuity of fully filled set ofd‐orbitals. A combination of experimental and computational data demonstrates that metal encapsulation inside the cyclodextrin cavity forces the C−H bond to point toward the metal, and reveals a still attractive “contra‐electrostatic” H‐bonding interaction. 
    more » « less