skip to main content

Title: Post‐modification of electrospun chitosan fibers

Electrospun biopolymer fibers are utilized in a wide variety of industries such as tissue engineering, sensors, drug delivery, membrane filtration, and protective membranes. The biopolymer chitosan, the partiallyN‐deacetylated derivative of chitin, which has been the focus of many studies, contains amine or hydroxyl functionalities that may be substituted with a number of chemistries such as carboxylate, benzene, or cyano groups. Modified chitosan solutions are often challenging to electrospin, as an entirely new set of solution and operating conditions must be developed for each modification. In this study, a facile post‐modification processing method for chitosan is introduced that circumvents the need to perform bulk modification prior to electrospinning, and therefore new spinning conditions. The chitosan mats were solution‐phase post‐processed by chemically functionalizing the mats with carboxylate, benzene and cyano groups. Scanning electron microscopy and Fourier‐transform infrared have been performed to determine fiber morphology retention and chemical interactions, respectively. Post‐modification retained the fibrous structure of the white‐colored, round and smooth mats with spectral changes indicating changes in the chitosan mat. Mean fiber diameters were 131 ± 75 nm (~31% smaller), 210 ± 81 nm (46% larger), and 85 ± 29 nm (~11% smaller) for carboxymethylchitosan, benzylidenechitosan, and cyanochitosan, respectively.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer Engineering & Science
Page Range / eLocation ID:
p. 1921-1931
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Lignin is the second most abundant biopolymer on Earth after cellulose. Since lignin breaks down in the environment naturally, lignin nanoparticles may serve as biodegradable carriers of biocidal actives with minimal environmental footprint compared to conventional antimicrobial formulations. Here, a lignin nanoparticle (LNP) coated with chitosan was engineered. Previous studies show both lignin and chitosan to exhibit antimicrobial properties. Another study showed that adding a chitosan coating can improve the adsorption of LNPs to biological samples by electrostatic adherence to oppositely charged surfaces. Our objective was to determine if these engineered particles would elicit toxicological responses, utilizing embryonic zebrafish toxicity assays. Zebrafish were exposed to nanoparticles with an intact chorionic membrane and with the chorion enzymatically removed to allow for direct contact of particles with the developing embryo. Both mortality and sublethal endpoints were analyzed. Mortality rates were significantly greater for chitosan-coated LNPs (Ch-LNPs) compared to plain LNPs and control groups. Significant sublethal endpoints were observed in groups exposed to Ch-LNPs with chorionic membranes intact. Our study indicated that engineered Ch-LNP formulations at high concentrations were more toxic than plain LNPs. Further study is warranted to fully understand the mechanisms of Ch-LNP toxicity. 
    more » « less
  2. The current paper presents the development and characterization of polyvinylidene fluoride (PVDF)-Zn2GeO4 (ZGO) fine fiber mats. ZGO nanorods (NRs) were synthesized using a hydrothermal method and incorporated in a PVDF solution to produce fine fiber mats. The fiber mats were prepared by varying the concentration of ZGO NRs (1.25–10 wt %) using the Forcespinning® method. The developed mats showed long, continuous, and homogeneous fibers, with average fiber diameters varying from 0.7 to 1 µm, depending on the ZGO concentration. X-ray diffraction spectra depicted a positive correlation among concentration of ZGO NRs and strengthening of the beta phase within the PVDF fibers. The composite system containing 1.25 wt % of ZGO displayed the highest piezoelectric response of 172 V. This fine fiber composite system has promising potential applications for energy harvesting and the powering of wearable and portable electronics. 
    more » « less
  3. Raw wood was subjected to sequential oxidation to produce 2,3,6-tricarboxycellulose (TCC) nanofibers with a high surficial charge of 1.14 mmol/g in the form of carboxylate groups. Three oxidation steps, including nitro-oxidation, periodate, and sodium chlorite oxidation, were successfully applied to generate TCC nanofibers from raw wood. The morphology of extracted TCC nanofibers measured using TEM and AFM indicated the average length, width, and thickness were in the range of 750 ± 110, 4.5 ± 1.8, and 1.23 nm, respectively. Due to high negative surficial charges on TCC, it was studied for its absorption capabilities against Pb2+ ions. The remediation results indicated that a low concentration of TCC nanofibers (0.02 wt%) was able to remove a wide range of Pb2+ ion impurities from 5–250 ppm with an efficiency between 709–99%, whereby the maximum adsorption capacity (Qm) was 1569 mg/g with R2 0.69531 calculated from Langmuir fitting. It was observed that the high adsorption capacity of TCC nanofibers was due to the collective effect of adsorption and precipitation confirmed by the FTIR and SEM/EDS analysis. The high carboxylate content and fiber morphology of TCC has enabled it as an excellent substrate to remove Pb2+ ions impurities. 
    more » « less
  4. Abstract

    The inferior water vapor permeability and water resistance properties are the major challenges that hindered the development of chitosan‐CNF composites for packaging applications. In this study, the chitosan‐CNF composite films were prepared with in situ crosslinking of citric acid (CA) to reduce the percent water uptake (WU) and water vapor permeability (WVP). The composite films were produced by the solvent casting method with 10%, 15%, and 20% CNF as a reinforcement, 20%, 25%, and 30% CA as a crosslinker, and 20% glycerol as a plasticizer. The Fourier transform infrared (FTIR) spectra of composite films with a peak at 1710 cm−1confirmed the effective crosslinking of citric acid on the chitosan‐CNF matrix. The crosslinked composite films exhibited the lowest WU of 39% and WVP of 9.99 × 10−7g/Pa s m2with reduced light transmittance due to CNF reinforcement. The scanning electron microscopy (SEM) study showed the smooth surface morphology of composite films. The CA crosslinking slightly decreased the tensile strength of composite films. However, the composite film with optimal CNF and CA concentration (25% and 20%, respectively) exhibited comparable tensile strength with other synthetic and biopolymer composites and can be used as a potential biopolymer composite for packaging applications.

    more » « less
  5. Oligo(Glu70co‐Leu30), a peptide synthesized by protease catalysis, is functionalized at the N‐terminus with a 4‐pentenoyl unit and grafted to polyLSL[6′Ac,6″Ac], a glycopolymer prepared by ring‐opening metathesis polymerization of lactonic sophorolipid diacetate. First, polyLSL[6'Ac,6”Ac] fiber mats are fabricated by electrospinning. Oxidation of the fiber mats and subsequent reaction with cysteamine lead to thiol‐functionalized fiber mats with no significant morphology changes. Grafting of the alkene‐modified oligopeptide to thiol‐functionalized polyLSL[6′Ac,6″Ac] fiber mats is achieved via “thiol‐ene” click reaction. X‐ray photoelectron spectroscopy analysis to characterize peptide grafting reveals that about 50 mol% of polyLSL[6′Ac,6′′Ac] repeat units at fiber surfaces are decorated with a peptide moiety, out of which about 1/3 of the oligo(Glu70co‐Leu30) units are physically adsorbed to polyLSL[6′Ac,6′′Ac]. The results of this work pave the way to precise engineering of polyLSL fiber mats that can be decorated with a potentially wide range of molecules that tailor surface chemistry and biological properties.image

    more » « less