skip to main content


Title: Toughness Amplification via Controlled Nanostructure in Lightweight Nano‐Bouligand Materials
Abstract

The enhanced properties of nanomaterials make them attractive for advanced high‐performance materials, but their role in promoting toughness has been unclear. Fabrication challenges often prevent the proper organization of nanomaterial constituents, and inadequate testing methods have led to a poor knowledge of toughness at small scales. In this work, the individual roles of nanomaterials and nanoarchitecture on toughness are quantified by creating lightweight materials made from helicoidal polymeric nanofibers (nano‐Bouligand). Unidirectional ( = 0°) and nano‐Bouligand beams ( = 2°–90°) are fabricated using two‐photon lithography and are designed in a micro‐single edge notch bend (µ‐SENB) configuration with relative densities between 48% and 81%. Experiments demonstrate two unique toughening mechanisms. First, size‐enhanced ductility of nanoconfined polymer fibers increases specific fracture energy by 70% in the 0° unidirectional beams. Second, nanoscale stiffness heterogeneity created via inter‐layer fiber twisting impedes crack growth and improves absolute fracture energy dissipation by 48% in high‐density nano‐Bouligand materials. This demonstration of size‐enhanced ductility and nanoscale heterogeneity as coexisting toughening mechanisms reveals the capacity for nanoengineered materials to greatly improve mechanical resilience in a new generation of advanced materials.

 
more » « less
Award ID(s):
2032539
NSF-PAR ID:
10419181
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
19
Issue:
50
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is now a well-established fact that even simple topology variations can drastically change the fracture response of structures. With the objective of gaining quantitative insight into this phenomenon, this paper puts forth a density-based topology optimization framework for the fracture response of structures subjected to quasistatic mechanical loads. One of the two key features of the proposed framework is that it makes use of a complete phase-field fracture theory that has been recently shown capable of accurately describing the nucleation and propagation of brittle fracture in a wide range of nominally elastic materials under a wide range of loading conditions. The other key feature is that the framework is based on a multi-objective function that allows optimizing in a weighted manner: ( ) the initial stiffness of the structure, ( ) the first instance at which fracture nucleates, and ( ) the energy dissipated by fracture propagation once fracture nucleation has occurred. The focus is on the basic case of structures made of a single homogeneous material featuring an isotropic linear elastic behavior alongside an isotropic strength surface and toughness. Novel interpolation rules are proposed for each of these three types of material properties. As a first effort to gain quantitative insight, the framework is deployed to optimize the fracture response of 2D structures wherein the fracture is bound to nucleate in three different types of regions: within the bulk, from geometric singularities (pre-existing cracks and sharp corners), and from smooth parts of the boundary. The obtained optimized structures are shown to exhibit significantly enhanced fracture behaviors compared to those of structures that are optimized according to conventional stiffness maximization. Furthermore, the results serve to reveal a variety of strengthening and toughening mechanisms. These include the promotion of highly porous structures, the formation of tension-compression asymmetric regions, and the removal of cracks and sharp corners. The particular mechanism that is preferred by a given structure, not surprisingly, correlates directly to the elastic, strength, and toughness properties of the material that is made of. 
    more » « less
  2. Abstract

    When studying bone fragility diseases, it is difficult to identify which factors reduce bone’s resistance to fracture because these diseases alter bone at many length scales. Here, we investigate the contribution of nanoscale collagen behavior on macroscale toughness and microscale toughening mechanisms using a bovine heat-treatment fragility model. This model is assessed by developing an in situ toughness testing technique for synchrotron radiation micro-computed tomography to study the evolution of microscale crack growth in 3D. Low-dose imaging is employed with deep learning to denoise images while maintaining bone’s innate mechanical properties. We show that collagen damage significantly reduces macroscale toughness and post-yield properties. We also find that bone samples with a compromised collagen network have reduced amounts of crack deflection, the main microscale mechanism of fracture resistance. This research demonstrates that collagen damage at the nanoscale adversely affects bone’s toughening mechanisms at the microscale and reduces the overall toughness of bone.

     
    more » « less
  3. Abstract

    Biominerals are organic–mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano‐ and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO3) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO3biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro‐ and nanoscales, using polarization‐dependent imaging contrast mapping (PIC mapping), and the slight misorientations are consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single‐crystalline geologic aragonite. Molecular dynamics (MD) simulations of bicrystals at the molecular scale reveal that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight‐misorientation‐toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top‐down architecture, and are easily achieved by self‐assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals.

     
    more » « less
  4. Ceramic materials provide outstanding chemical and structural stability at high temperatures and in hostile environments but are susceptible to catastrophic fracture that severely limits their applicability. Traditional approaches to partially overcome this limitation rely on activating toughening mechanisms during crack growth to postpone fracture. Here, we demonstrate a more potent toughening mechanism that involves an intriguing possibility of healing the cracks as they form, even at room temperature, in an atomically layered ternary carbide. Crystals of this class of ceramic materials readily fracture along weakly bonded crystallographic planes. However, the onset of an abstruse mode of deformation, referred to as kinking in these materials, induces large crystallographic rotations and plastic deformation that physically heal the cracks. This implies that the toughness of numerous other layered ceramic materials, whose broader applications have been limited by their susceptibility to catastrophic fracture, can also be enhanced by microstructural engineering to promote kinking and crack-healing. 
    more » « less
  5. Abstract

    The abundance of cellulose found in natural resources such as wood, and the wide spectrum of structural diversity of cellulose nanomaterials in the form of micro‐nano‐sized particles and fibers, have sparked a tremendous interest to utilize cellulose's intriguing mechanical properties in designing high‐performance functional materials, where cellulose's structure–mechanics relationships are pivotal. In this progress report, multiscale mechanics understanding of cellulose, including the key role of hydrogen bonding, the dependence of structural interfaces on the spatial hydrogen bond density, the effect of nanofiber size and orientation on the fracture toughness, are discussed along with recent development on enabling experimental design techniques such as structural alteration, manipulation of anisotropy, interface and topology engineering. Progress in these fronts renders cellulose a prospect of being effectuated in an array of emerging sustainable applications and being fabricated into high‐performance structural materials that are both strong and tough.

     
    more » « less