skip to main content


Title: Large‐Scale Cardiac Muscle Cell‐Based Coupled Oscillator Network for Vertex Coloring Problem
  more » « less
PAR ID:
10419297
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
5
Issue:
5
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Quadratic Unconstrained Binary Optimization (QUBO) problem becomes an attractive and valuable optimization problem formulation in that it can easily transform into a variety of other combinatorial optimization problems such as Graph/number Partition, Max-Cut, SAT, Vertex Coloring, TSP, etc. Some of these problems are NP-hard and widely applied in industry and scientific research. Meanwhile, QUBO has been discovered to be compatible with two emerging computing paradigms, neuromorphic computing, and quantum computing, with tremendous potential to speed up future optimization solvers. In this paper, we propose a novel neuromorphic computing paradigm that employs multiple collaborative spiking neural networks to solve QUBO problems. Each SNN conducts a local stochastic gradient descent search and shares the global best solutions periodically to perform a meta-heuristic search for optima. We simulate our model and compare it to a single SNN solver and a mult-SNN solver without collaboration. Through tests on benchmark problems, the proposed method is demonstrated to be more efficient and effective in searching for QUBO optima. Specifically, it exhibits x10 and x15-20 speedup respectively on the multi-SNN solver without collaboration and the single-SNN solver. 
    more » « less
  3. Combinatorial optimization problems prevail in engineering and industry. Some are NP-hard and thus become difficult to solve on edge devices due to limited power and computing resources. Quadratic Unconstrained Binary Optimization (QUBO) problem is a valuable emerging model that can formulate numerous combinatorial problems, such as Max-Cut, traveling salesman problems, and graphic coloring. QUBO model also reconciles with two emerging computation models, quantum computing and neuromorphic computing, which can potentially boost the speed and energy efficiency in solving combinatorial problems. In this work, we design a neuromorphic QUBO solver composed of a swarm of spiking neural networks (SNN) that conduct a population-based meta-heuristic search for solutions. The proposed model can achieve about x20 40 speedup on large QUBO problems in terms of time steps compared to a traditional neural network solver. As a codesign, we evaluate the neuromorphic swarm solver on a 40nm 25mW Resistive RAM (RRAM) Compute-in-Memory (CIM) SoC with a 2.25MB RRAM-based accelerator and an embedded Cortex M3 core. The collaborative SNN swarm can fully exploit the specialty of CIM accelerator in matrix and vector multiplications. Compared to previous works, such an algorithm-hardware synergized solver exhibits advantageous speed and energy efficiency for edge devices. 
    more » « less
  4. Abstract Combinatorial optimization problems are difficult to solve with conventional algorithms. Here we explore networks of nonlinear electronic oscillators evolving dynamically towards the solution to such problems. We show that when driven into subharmonic response, such oscillator networks can minimize the Ising Hamiltonian on non-trivial antiferromagnetically-coupled 3-regular graphs. In this context, the spin-up and spin-down states of the Ising machine are represented by the oscillators’ response at the even or odd driving cycles. Our experimental setting of driven nonlinear oscillators coupled via a programmable switch matrix leads to a unique energy minimizer when one exists, and probes frustration where appropriate. Theoretical modeling of the electronic oscillators and their couplings allows us to accurately reproduce the qualitative features of the experimental results and extends the results to larger graphs. This suggests the promise of this setup as a prototypical one for exploring the capabilities of such an unconventional computing platform. 
    more » « less
  5. null (Ed.)
    Abstract Noise is expected to play an important role in the dynamics of analog systems such as coupled oscillators which have recently been explored as a hardware platform for application in computing. In this work, we experimentally investigate the effect of noise on the synchronization of relaxation oscillators and their computational properties. Specifically, in contrast to its typically expected adverse effect, we first demonstrate that a common white noise input induces frequency locking among uncoupled oscillators. Experiments show that the minimum noise voltage required to induce frequency locking increases linearly with the amplitude of the oscillator output whereas it decreases with increasing number of oscillators. Further, our work reveals that in a coupled system of oscillators—relevant to solving computational problems such as graph coloring, the injection of white noise helps reduce the minimum required capacitive coupling strength. With the injection of noise, the coupled system demonstrates frequency locking along with the desired phase-based computational properties at 5 × lower coupling strength than that required when no external noise is introduced. Consequently, this can reduce the footprint of the coupling element and the corresponding area-intensive coupling architecture. Our work shows that noise can be utilized as an effective knob to optimize the implementation of coupled oscillator-based computing platforms. 
    more » « less