skip to main content


Title: A Non‐Volatile, Thermo‐Reversible, and Self‐Protective Gel Electrolyte Providing Highly Precise and Reversible Thermal Protection for Lithium Batteries
Abstract

The safety issue represents a long‐standing obstacle that retards large‐scale applications of high‐energy lithium batteries. Among different causes, thermal runaway is the most prominent one. To date, various approaches have been proposed to inhibit thermal runaway; however, they suffer from some intrinsic drawbacks, either being irreversible (one‐time protection), using volatile and flammable electrolytes, or delayed thermal protection (140–150 °C). Herein, this work exploits a non‐volatile, non‐flammable, and thermo‐reversible polymer/ionic liquid gel electrolyte as a built‐in safety switch, which provides highly precise and reversible thermal protection for lithium batteries. At high temperature, the gel electrolyte experiences phase separation and deposits polymer on the electrode surfaces/separators, which blocks Li+insertion reactions and thus prevents thermal runaway. When the temperature decreases, the gel electrolyte restores its original properties and battery performance resumes. Notably, the optimal protection effect is achieved at 110 °C, which is the critical temperature right before thermal runaway. More importantly, such a thermal‐protection process can repeat multiple times without compromising the battery performance, indicating extraordinary thermal reversibility. To the authors' knowledge, such a precise and reversible protection effect has never been reported in any electrolyte systems, and this work opens an exciting avenue for safe operation of high‐energy Li batteries.

 
more » « less
NSF-PAR ID:
10419321
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
13
Issue:
22
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  2. Abstract

    Lithium‐ion batteries have remained a state‐of‐the‐art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high‐voltage cathodes represent promising candidates for next‐generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high‐performing single‐ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room‐temperature conductivity of 1.5 × 10−4S cm−1, and exceptional selectivity for Li‐ion conduction (tLi+= 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi‐solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.

     
    more » « less
  3. Abstract

    Safety issues remain a major obstacle toward large‐scale applications of high‐energy lithium‐ion batteries. Embedding thermo‐responsive polymer switching materials (TRPS) into batteries is a potential strategy to prevent thermal runaway, which is a major cause of battery failures. Here, thin, flexible, highly responsive polymer nanocomposites enabled by bio‐inspired nanospiky metal (Ni) particles are reported. These unique Ni particles are synthesized by a simple aqueous reaction at gram‐scale with controlled surface morphology and composition to optimize electrical properties of the nanocomposites. The Ni particles provide TRPS films with a high room‐temperature conductivity of up to 300 S cm−1. Such TRPS composite films also have a high rate (<1 s) of resistance switching within a narrow temperature range, good reversibility upon on/off switching, and a tunable switching temperature (Ts; 75 to 170 °C) that can be achieved by tailing their compositions. The small size (≈500 nm) of Ni particles enables ready fabrication of thin and flexible TPRS films with thickness approaching 5 µm or less. These features suggest the great potential of using this new type of responsive polymer composite for more effective battery thermal regulation without sacrificing cell performance.

     
    more » « less
  4. Dusastre, Vincent (Ed.)
    A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with use of high-energy-density electrodes. We describe molecular ionic composite (MIC) electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS·cm-1 at 25 °C) and electrochemical stability (5.6 V vs Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω·cm2) and overpotentials (≤ 120 mV @ 1 mA·cm-2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer-ion assembly to incorporate an inter-grain network filled with defective LiFSI & LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes. 
    more » « less
  5. Abstract

    Solid‐state electrolyte materials are attractive options for meeting the safety and performance needs of advanced lithium‐based rechargeable battery technologies because of their improved mechanical and thermal stability compared to liquid electrolytes. However, there is typically a tradeoff between mechanical and electrochemical performance. Here an elastic Li‐ion conductor with dual covalent and dynamic hydrogen bonding crosslinks is described to provide high mechanical resilience without sacrificing the room‐temperature ionic conductivity. A solid‐state lithium‐metal/LiFePO4cell with this resilient electrolyte can operate at room temperature with a high cathode capacity of 152 mAh g−1for 300 cycles and can maintain operation even after being subjected to intense mechanical impact testing. This new dual crosslinking design provides robust mechanical properties while maintaining ionic conductivity similar to state‐of‐the‐art polymer‐based electrolytes. This approach opens a route toward stable, high‐performance operation of solid‐state batteries even under extreme abuse.

     
    more » « less