skip to main content

Title: A >200 ka U‐Th Based Chronology From Lacustrine Evaporites, Searles Lake, CA

Well‐dated lacustrine records are essential to establish the timing and drivers of regional hydroclimate change. Searles Basin, California, records the depositional history of a fluctuating saline‐alkaline lake in the terminal basin of the Owens River system draining the eastern Sierra Nevada. Here, we establish a U‐Th chronology for the ∼76‐m‐long SLAPP‐SLRS17 core collected in 2017 based on dating of evaporite minerals. Ninety‐eight dated samples comprising nine different minerals were evaluated based on stratigraphic, mineralogic, textural, chemical, and reproducibility criteria. After the application of these criteria, a total of 37 dated samples remained as constraints for the age model. A lack of dateable minerals between 145 and 110 ka left the age model unconstrained over the penultimate glacial termination (Termination II). We thus established a tie point between plant wax δD values in the core and a nearby speleothem δ18O record at the beginning of the Last Interglacial. We construct a Bayesian age model allowing stratigraphy to inform sedimentation rate inflections. We find that the >210 ka SLAPP‐SRLS17 record contains five major units that correspond with prior work. The new dating is broadly consistent with previous efforts but provides more precise age estimates and enables a detailed evaluation of evaporite depositional history. We also offer a substantial revision of the age of the Bottom Mud‐Mixed Layer contact, shifting it from ∼130 ka to 178 ± 3 ka. The new U‐Th chronology documents the timing of mud and salt layers and lays the foundation for climate reconstructions.

more » « less
Award ID(s):
1903544 1903519
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biehl, Peter F. (Ed.)
    The timeframe of Indigenous settlements in Northeast North America in the 15 th -17 th centuries CE has until very recently been largely described in terms of European material culture and history. An independent chronology was usually absent. Radiocarbon dating has recently begun to change this conventional model radically. The challenge, if an alternative, independent timeframe and history is to be created, is to articulate a high-resolution chronology appropriate and comparable with the lived histories of the Indigenous village settlements of the period. Improving substantially on previous initial work, we report here high-resolution defined chronologies for the three most extensively excavated and iconic ancestral Kanienʼkehá꞉ka (Mohawk) village sites in New York (Smith-Pagerie, Klock and Garoga), and a fourth early historic Indigenous site, Brigg’s Run, and re-assess the wider chronology of the Mohawk River Valley in the mid-15 th to earlier 17 th centuries. This new chronology confirms initial suggestions from radiocarbon that a wholesale reappraisal of past assumptions is necessary, since our dates conflict completely with past dates and the previously presumed temporal order of these three iconic sites. In turn, a wider reassessment of northeastern North American early history and re-interpretation of Atlantic connectivities in the later 15 th through early 17 th centuries is required. Our new closely defined date ranges are achieved employing detailed archival analysis of excavation records to establish the contextual history for radiocarbon-dated samples from each site, tree-ring defined short time series from wood charcoal samples fitted against the radiocarbon calibration curve (‘wiggle-matching’), and Bayesian chronological modelling for each of the individual sites integrating all available prior knowledge and radiocarbon dating probabilities. We define (our preferred model) most likely (68.3% highest posterior density) village occupation ranges for Smith-Pagerie of ~1478–1498, Klock of ~1499–1521, Garoga of ~1550–1582, and Brigg’s Run of ~1619–1632. 
    more » « less

    International Ocean Drilling Program (IODP) Expedition 341 recovered sediments from the south Alaska continental slope that preserves a well resolved and dated inclination record over most of the past ∼43 000 yr. The Site U1419 chronology is among the highest resolution in the world, constrained by 173 radiocarbon dates, providing the ability to study Palaeomagnetic Secular Variation (PSV) on centennial to millennial timescales. This record has an exceptionally expanded late Pleistocene sedimentary record with sedimentation rates commonly exceeding 100 cm kyr–1, while also preserving a lower resolution Holocene PSV record at the top. Natural and laboratory-induced magnetic remanences of U1419 u-channels from the 112-m-long spliced record were studied using stepwise AF demagnetization. Hysteresis loops were obtained on 95 and IRM acquisition curves on 9 discrete samples to facilitate magnetic domain state, coercivity and magnetic mineralogical determinations. Due to complexities related to lithology, magnetic mineralogy, and depositional and post-depositional processes, Site U1419 sediments are not suitable for palaeointensity studies and declination could not be robustly reconstructed. Progressive (titano-)magnetite dissolution with depth results in decreasing NRM intensity and signal-to-noise that is exacerbated at higher demagnetization steps. As a result, inclination measured after the 20 mT AF demagnetization step provides the most reliable directional record. Inclination appears to be well resolved with removal of just a few intervals influenced by depositional and/or sampling and coring deformation. The shipboard inclination stack from nearby IODP Site U1418, on a new age model developed from 19 radiocarbon dates on U1418 and 18 magnetic susceptibility-based tie-points to site survey core EW0408-87JC, verifies centennial to millennial scale variations in inclination observed in U1419. Comparisons with other independently dated records from the NE Pacific and western North America suggest that these sites likely capture regional geomagnetic variability. As such, this new high-resolution and well-dated inclination record, especially robust between 15 and 30 cal kyr BP, offers new geomagnetic insights and a regional correlation tool to explore this generally understudied part of the world.

    more » « less
  3. Abstract

    Fe‐ and Mn‐oxides are common secondary minerals in faults, fractures, and veins and potentially record information about the timing of fluid movement through their host rocks. These phases are difficult to date by most radioisotopic techniques, but relatively high concentrations of U and Th make the (U‐Th)/He system a promising approach. We present new petrographic, geochronologic and thermochronologic analyses of secondary oxides and associated minerals from fault zones and fractures in southeastern Arizona. We use these phases in attempt to constrain the timing of fluid flow and their relationship to magmatic, tectonic, or other regional processes. In the shallowly exhumed Galiuro Mountains, Fe‐oxide (U‐Th)/He dates correspond to host‐rock crystallization and magmatic intrusions from ca. 1.6 to 1.1 Ga. Step‐heating4He/3He experiments and polydomain diffusion modeling of3He release spectra on these samples are consistent with a crystallite size control on He diffusivity, and little fractional loss of radiogenic He since formation in coarse‐grained hematite, but large losses from fine‐grained Mn‐oxide. In contrast to Proterozoic dates, Fe‐ and Mn‐oxides from the Catalina‐Rincon and Pinaleño metamorphic core complexes are exclusively Cenozoic, with dates clustering at ca. 24, 15, and 9 Ma, which represent distinct cooling or fluid‐flow episodes during punctuated periods of normal faulting. Finally, a subset of Fe‐oxides yield dates of ca. 5 Ma to 6 ka and display either pseudomorphic cubic forms consistent with oxidative retrogression of original pyrite or magnetite, or fine‐grained botryoidal morphologies that we interpret to represent approximate ages of recrystallization or pseudomorphic replacement at shallow depths.

    more » « less
  4. Abstract

    The end-Triassic extinction (ETE) event represents one of the ‘big five’ episodes of mass extinction. The leading hypothesis for the cause of the ETE is the intrusion of voluminous magmas of the Central Atlantic Magmatic Province (CAMP) into carbon-rich sediments of two South American sedimentary basins, around 201.5 Ma. The timing of dikes and sills emplacement, however, must be considered in light of age models from CAMP rocks occurring in North America. In this work, we present new high-precision ages for critical samples in NE Brazil (201.579 ± 0.057 Ma) and Canada (201.464 ± 0.017 Ma), in order to evaluate how the South and North American magmatic events compare at the 100-ka level, and to the ETE timing. We also discuss inter-laboratory reproducibility of high-precision CAMP ages, including the230Th disequilibrium corrections that are made to zircon U–Pb dates. Our findings in this newly discovered extension of the CAMP large igneous province in NE Brazil support the hypothesis that the CAMP may be responsible for the ETE through the triggering of greenhouse gas release from magma-evaporite interactions (contact metamorphism) in the South American basins.

    more » « less
  5. Modern human behavioral innovations from the Middle Stone Age (MSA) include the earliest indicators of full coastal adaptation evidenced by shell middens, yet many MSA middens remain poorly dated. We apply230Th/U burial dating to ostrich eggshells (OES) from Ysterfontein 1 (YFT1, Western Cape, South Africa), a stratified MSA shell midden.230Th/U burial ages of YFT1 OES are relatively precise (median ± 2.7%), consistent with other age constraints, and preserve stratigraphic principles. Bayesian age–depth modeling indicates YFT1 was deposited between 119.9 to 113.1 thousand years ago (ka) (95% CI of model ages), and the entire 3.8 m thick midden may have accumulated within ∼2,300 y. Stable carbon, nitrogen, and oxygen isotopes of OES indicate that during occupation the local environment was dominated by C3vegetation and was initially significantly wetter than at present but became drier and cooler with time. Integrating archaeological evidence with OES230Th/U ages and stable isotopes shows the following: 1) YFT1 is the oldest shell midden known, providing minimum constraints on full coastal adaptation by ∼120 ka; 2) despite rapid sea-level drop and other climatic changes during occupation, relative shellfish proportions and sizes remain similar, suggesting adaptive foraging along a changing coastline; 3) the YFT1 lithic technocomplex is similar to other west coast assemblages but distinct from potentially synchronous industries along the southern African coast, suggesting human populations were fragmented between seasonal rainfall zones; and 4) accumulation rates (up to 1.8 m/ka) are much higher than previously observed for dated, stratified MSA middens, implying more intense site occupation akin to Later Stone Age middens.

    more » « less