skip to main content


Title: Reassessment of the latitudinal temperature gradient across the Pacific during the EECO using a novel combination of instrumentation
The early Eocene Climatic Optimum (EECO; ~ 53.3 to 49.1 Ma) was a period of the warmest sustained temperatures of the Cenozoic caused by perturbations to the global carbon cycle. Deep sea sediment cores and the microfossils preserved within them are the primary sources of information for these changes in climate and global carbon cycling but are subject to diagenetic alteration after deposition. One of the great challenges in paleoclimate research is determining how to accurately interpreting the proxy record by identifying the amount of chemical alteration of the isotopic and elemental compositions locked within microfossils such as foraminifera. The planktic foraminifera record has been biased by digenesis, provoking questions about the strength of the latitudinal temperature gradient throughout the EECO, specifically with respect to mismatches between proxy data and climate model simulations that remain unresolved. To investigate this question, we selected three deep sea sites that span across the Pacific Ocean, ODP Sites 865, 1209 and DSDP Site 207. From these sediments we extracted carefully screened planktic foraminifera and conducted analysis by two independent approaches on splits of the same individual foraminiferal shells. We measured the δ18O composition by conventional analysis (gas source mass spectrometry), and Mg/Ca ratios on fragments of the same shells by LA-ICP-MS that allows for a careful diagenetic screening. We then independently estimate sea surface temperatures and compare records to quantify the extent of bias in the planktonic foraminifera record. This approach helps to reassess the latitudinal temperature gradients across the EECO.  more » « less
Award ID(s):
1952736
PAR ID:
10419472
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AGU Fall Meeting 2022, held in Chicago, IL, 12-16 December 2022, id. PP32C-0959.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ 18 O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in >60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ 18 O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ 18 O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO 2 , continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states. 
    more » « less
  2. The Paleocene‐Eocene thermal maximum (PETM, 56 Ma) is an ancient global warming event closely coupled to the release of massive amounts of d13C‐depleted carbon into the ocean‐atmosphere system, making it an informative analogue for future climate change. However, uncertainty still exists regarding tropical sea‐surface temperatures (SSTs) in open ocean settings during the PETM. Here, we present the first paired d13C:Mg/Ca record derived in situ from relatively well‐preserved subdomains inside individual planktic foraminifer shells taken from a PETM record recovered in the central Pacific Ocean at Ocean Drilling Program Site 865. The d13C signature of each individual shell was used to confirm calcification during the PETM, thereby reducing the unwanted effects of sediment mixing that secondarily smooth paleoclimate signals constructed with fossil planktic foraminifer shells. This method of “isotopic screening” reveals that shells calcified during the PETM have elevated Mg/Ca ratios reflecting exceptionally warm tropical SSTs (∼33–34°C). The increase in Mg/Ca ratios suggests ∼6°C of warming, which is more congruent with SST estimates derived from organic biomarkers in PETM records at other tropical sites. These extremely warm SSTs exceed the maximum temperature tolerances of modern planktic foraminifers. Important corollaries to the findings of this study are (a) the global signature of PETM warmth was uniformly distributed across different latitudes, (b) our Mg/Ca‐based SST record may not capture peak PETM warming at tropical Site 865 due to the thermally‐induced ecological exclusion of planktic foraminifers, and (c) the record of such transitory ecological exclusion has been obfuscated by post‐depositional sediment mixing at Site 865. 
    more » « less
  3. null (Ed.)
    Abstract. During the early part of the last glacial termination (17.2–15 ka) and coincident with a ∼35 ppm rise in atmospheric CO2, a sharp 0.3‰–0.4‰ decline in atmospheric δ13CO2 occurred, potentially constraining the key processes that account for the early deglacial CO2 rise. A comparable δ13C decline has also been documented in numerous marine proxy records from surface and thermocline-dwelling planktic foraminifera. The δ13C decline recorded in planktic foraminifera has previously been attributed to the release of respired carbon from the deep ocean that was subsequently transported within the upper ocean to sites where the signal was recorded (and then ultimately transferred to the atmosphere). Benthic δ13C records from the global upper ocean, including a new record presented here from the tropical Pacific, also document this distinct early deglacial δ13C decline. Here we present modeling evidence to show that rather than respired carbon from the deep ocean propagating directly to the upper ocean prior to reaching the atmosphere, the carbon would have first upwelled to the surface in the Southern Ocean where it would have entered the atmosphere. In this way the transmission of isotopically light carbon to the global upper ocean was analogous to the ongoing ocean invasion of fossil fuel CO2. The model results suggest that thermocline waters throughout the ocean and 500–2000 m water depths were affected by this atmospheric bridge during the early deglaciation. 
    more » « less
  4. Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation. 
    more » « less
  5. Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation. 
    more » « less