skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Semantic Parsing in Understanding Procedural Text
In this paper, we investigate whether symbolic semantic representations, extracted from deep semantic parsers, can help to reason over the states of involved entities in a procedural text. We consider a deep semantic parser (TRIPS) and semantic role labeling as two sources of semantic parsing knowledge. First, we propose PROPOLIS, a symbolic parsing-based procedural reasoning framework. Second, we integrate semantic parsing information into state-of-the-art neural models for procedural reasoning. Our experiments indicate that explicitly incorporating such semantic knowledge improves procedural understanding. This paper presents new metrics for evaluating procedural reasoning tasks that clarify the challenges and identify differences among neural, symbolic, and integrated models.  more » « less
Award ID(s):
2028626
PAR ID:
10419591
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics: EACL 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pre-trained seq2seq models excel at graph semantic parsing with rich annotated data, but generalize worse to out-of-distribution (OOD) and long-tail examples. In comparison, symbolic parsers under-perform on population-level metrics, but exhibit unique strength in OOD and tail generalization. In this work, we study compositionality-aware approach to neural-symbolic inference informed by model confidence, performing fine-grained neural-symbolic reasoning at subgraph level (i.e., nodes and edges) and precisely targeting subgraph components with high uncertainty in the neural parser. As a result, the method combines the distinct strength of the neural and symbolic approaches in capturing different aspects of the graph prediction, leading to well-rounded generalization performance both across domains and in the tail. We empirically investigate the approach in the English Resource Grammar (ERG) parsing problem on a diverse suite of standard in-domain and seven OOD corpora. Our approach leads to 35.26% and 35.60% error reduction in aggregated SMATCH score over neural and symbolic approaches respectively, and 14% absolute accuracy gain in key tail linguistic categories over the neural model, outperforming prior state-of-art methods that do not account for compositionality or uncertainty. 
    more » « less
  2. This paper develops a novel methodology for using symbolic knowledge in deep learning. From first principles, we derive a semantic loss function that bridges between neural output vectors and logical constraints. This loss function captures how close the neural network is to satisfying the constraints on its output. An experimental evaluation shows that it effectively guides the learner to achieve (near-)state-of-the-art results on semi-supervised multi-class classification. Moreover, it significantly increases the ability of the neural network to predict structured objects, such as rankings and paths. These discrete concepts are tremendously difficult to learn, and benefit from a tight integration of deep learning and symbolic reasoning methods. 
    more » « less
  3. Large Language Models (LLMs) have made significant strides in various intelligent tasks but still struggle with complex action reasoning tasks that require systematic search. To address this limitation, we introduce a method that bridges the natural language understanding capability of LLMs with the symbolic reasoning capability of action languages---formal languages for reasoning about actions. Our approach, termed {\sf LLM+AL}, leverages the LLM's strengths in semantic parsing and commonsense knowledge generation alongside the action language's expertise in automated reasoning based on encoded knowledge. We compare {\sf LLM+AL} against state-of-the-art LLMs, including {\sc ChatGPT-4}, {\sc Claude 3 Opus}, {\sc Gemini Ultra 1.0}, and {\sc o1-preview}, using benchmarks for complex reasoning about actions. Our findings indicate that while all methods exhibit various errors, {\sf LLM+AL}, with relatively simple human corrections, consistently leads to correct answers, whereas using LLMs alone does not yield improvements even after human intervention. {\sf LLM+AL} also contributes to automated generation of action languages. 
    more » « less
  4. This tutorial will provide an overview of recent advances on neuro-symbolic approaches for information retrieval. A decade ago, knowledge graphs and semantic annotations technology led to active re- search on how to best leverage symbolic knowledge. At the same time, neural methods have demonstrated to be versatile and highly effective. From a neural network perspective, the same representation approach can service document ranking or knowledge graph reasoning. End-to-end training allows to optimize complex methods for downstream tasks. We are at the point where both the symbolic and the neural research advances are coalescing into neuro-symbolic approaches. The underlying research questions are how to best combine symbolic and neural ap- proaches, what kind of symbolic/neural approaches are most suitable for which use case, and how to best integrate both ideas to advance the state of the art in information retrieval. 
    more » « less
  5. We present Neural Probabilistic Soft Logic (NeuPSL), a novel neuro-symbolic (NeSy) framework that unites state-of-the-art symbolic reasoning with the low-level perception of deep neural networks. To explicitly model the boundary between neural and symbolic representations, we introduce NeSy Energy-Based Models, a general family of energy-based models that combine neural and symbolic reasoning. Using this framework, we show how to seamlessly integrate neural and symbolic parameter learning and inference. We perform an extensive empirical evaluation and show that NeuPSL outperforms existing methods on joint inference and has significantly lower variance in almost all settings. 
    more » « less