skip to main content


This content will become publicly available on May 1, 2024

Title: Developmental environment has lasting effects on amphibian post-metamorphic behavior and thermal physiology
ABSTRACT Environmental challenges early in development can result in complex phenotypic trade-offs and long-term effects on individual physiology, performance and behavior, with implications for disease and predation risk. We examined the effects of simulated pond drying and elevated water temperatures on development, growth, thermal physiology and behavior in a North American amphibian, Rana sphenocephala. Tadpoles were raised in outdoor mesocosms under warming and drying regimes based on projected climatic conditions in 2070. We predicted that amphibians experiencing the rapid pond drying and elevated pond temperatures associated with climate change would accelerate development, be smaller at metamorphosis and demonstrate long-term differences in physiology and exploratory behavior post-metamorphosis. Although both drying and warming accelerated development and reduced survival to metamorphosis, only drying resulted in smaller animals at metamorphosis. Around 1 month post-metamorphosis, animals from the control treatment jumped relatively farther at high temperatures in jumping trials. In addition, across all treatments, frogs with shorter larval periods had lower critical thermal minima and maxima. We also found that developing under warming and drying resulted in a less exploratory behavioral phenotype, and that drying resulted in higher selected temperatures in a thermal gradient. Furthermore, behavior predicted thermal preference, with less exploratory animals selecting higher temperatures. Our results underscore the multi-faceted effects of early developmental environments on behavioral and physiological phenotypes later in life. Thermal preference can influence disease risk through behavioral thermoregulation, and exploratory behavior may increase risk of predation or pathogen encounter. Thus, climatic stressors during development may mediate amphibian exposure and susceptibility to predators and pathogens into later life stages.  more » « less
Award ID(s):
2120084
NSF-PAR ID:
10419680
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
226
Issue:
9
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The many and varied effects of human‐induced environmental change have the potential to threaten animal biodiversity and species abundance. Importantly, human land use and global climate change are predicted to reduce water availability, which might have negative consequences for freshwater organisms.

    In this study, we tested for an effect of a shortened hydroperiod on larval growth and development, and post‐metamorphic survival and immune function in a temperate frog,Rana pipiens.

    Animals developing under pond drying conditions metamorphosed at a smaller size and had lower survival after metamorphosis. We found sex‐specific differences in larval period in our fastest drying treatment, with males metamorphosing more quickly than females. Individuals that developed under drying conditions also showed reduced skin swelling after phytohaemagglutinin injection, indicating a compromised immune response. We found support for trade‐offs between growth, development and post‐metamorphic immune function across hydroperiod treatments. Whole blood from animals with shorter larval periods had lower bacterial killing ability, and small‐bodied juveniles had lower antibody titres.

    Overall, our results indicate that a shortened hydroperiod can affect the rate of larval amphibian growth and development, and might negatively impact the condition of species that rely on freshwater for development. Our work improves understanding of the complex impacts that environmental stressors might have on the health of animal populations.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Many animals with complex life cycles can cope with environmental uncertainty by altering the timing of life history switch points through plasticity. Pond hydroperiod has important consequences for the fitness of aquatic organisms and many taxa alter the timing of life history switch points in response to habitat desiccation. For example, larval amphibians can metamorphose early to escape drying ponds. Such plasticity may induce variation in size and morphology of juveniles which can result in carry-over effects on jumping performance. To investigate the carry-over effects of metamorphic plasticity to pond drying, we studied the Túngara frog,Physalaemus pustulosus, a tropical anuran that breeds in highly ephemeral habitats. We conducted an outdoor field mesocosm experiment in which we manipulated water depth and desiccation and measured time and size at metamorphosis, tibiofibula length and jumping performance. We also conducted a complimentary laboratory experiment in which we manipulated resources, water depth and desiccation. In the field experiment, metamorphs from dry-down treatments emerged earlier, but at a similar size to metamorphs from constant depth treatments. In the laboratory experiment, metamorphs from the low depth and dry-down treatments emerged earlier and smaller. In both experiments, frogs from dry-down treatments had relatively shorter legs, which negatively impacted their absolute jumping performance. In contrast, reductions in resources delayed and reduced size at metamorphosis, but had no negative effect on jumping performance. To place these results in a broader context, we review past studies on carry-over effects of the larval environment on jumping performance. Reductions in mass and limb length generally resulted in lower jumping performance across juvenile anurans tested to date. Understanding the consequences of plasticity on size, morphology and performance can elucidate the linkages between life stages.

     
    more » « less
  3. The immune equilibrium model suggests that exposure to microbes during early life primes immune responses for pathogen exposure later in life. While recent studies using a range of gnotobiotic (germ-free) model organisms offer support for this theory, we currently lack a tractable model system for investigating the influence of the microbiome on immune system development. Here, we used an amphibian species ( Xenopus laevis ) to investigate the importance of the microbiome in larval development and susceptibility to infectious disease later in life. We found that experimental reductions of the microbiome during embryonic and larval stages effectively reduced microbial richness, diversity and altered community composition in tadpoles prior to metamorphosis. In addition, our antimicrobial treatments resulted in few negative effects on larval development, body condition, or survival to metamorphosis. However, contrary to our predictions, our antimicrobial treatments did not alter susceptibility to the lethal fungal pathogen Batrachochytrium dendrobatidis ( Bd ) in the adult life stage. While our treatments to reduce the microbiome during early development did not play a critical role in determining susceptibility to disease caused by Bd in X. laevis , they nevertheless indicate that developing a gnotobiotic amphibian model system may be highly useful for future immunological investigations. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less
  4. Abstract Development can play a critical role in how organisms respond to changes in the environment. Tolerance to environmental challenges can vary during ontogeny, with individual- and population-level impacts that are associated with the timing of exposure relative to the timing of vulnerability. In addition, the life history consequences of different stressors can vary with the timing of exposure to stress. Salinization of freshwater ecosystems is an emerging environmental concern, and habitat salinity can change rapidly due, for example, to storm surge, runoff of road deicing salts, and rainfall. Elevated salinity can increase the demands of osmoregulation in freshwater organisms, and amphibians are particularly at risk due to their permeable skin and, in many species, semi-aquatic life cycle. In three experiments, we manipulated timing and duration of exposure to elevated salinity during larval development of southern toad (Anaxyrus terrestris) tadpoles and examined effects on survival, larval growth, and timing of and size at metamorphosis. Survival was reduced only for tadpoles exposed to elevated salinity early in development, suggesting an increase in tolerance as development proceeds; however, we found no evidence of acclimation to elevated salinity. Two forms of developmental plasticity may help to ameliorate costs of transient salinity exposure. With early salinity exposure, the return to freshwater was accompanied by a period of rapid compensatory growth, and metamorphosis ultimately occurred at a similar age and size as freshwater controls. By contrast, salinity exposure later in development led to earlier metamorphosis at reduced size, indicating an acceleration of metamorphosis as a mechanism to escape salinity stress. Thus, the consequences of transient salinity exposure were complex and were mediated by developmental state. Salinity stress experienced early in development resulted in acute costs but little long-lasting effect on survivors, while exposures later in development resulted in sublethal effects that could influence success in subsequent life stages. Overall, our results suggest that elevated salinity is more likely to affect southern toad larvae when experienced early during larval development, but even brief sublethal exposure later in development can alter life history in ways that may impact fitness. 
    more » « less
  5. Most insects are poikilotherms and ectotherms, so their body temperature fluctuates and closely aligns with the temperature of their environment. The rise in global temperatures is affecting the physiology of insects by altering their ability to survive, reproduce, and transmit disease. Aging also impacts insect physiology because the body deteriorates via senescence as the insect ages. Although temperature and age both impact insect biology, these factors have historically been studied in isolation. So, it is unknown whether or how temperature and age interact to shape insect physiology. Here, we investigated the effects of warmer temperature (27 °C, 30 °C and 32 °C), aging (1, 5, 10, and 15 days post-eclosion), and their interaction on the size and body composition of the mosquito, Anopheles gambiae. We found that warmer temperatures result in slightly smaller adult mosquitoes, as measured by abdomen and tibia length. Aging alters both abdominal length and dry weight in a manner that correlates with the increase in energetic resources and tissue remodeling that occurs after metamorphosis and the senescence-based decline that ensues later. Moreover, the carbohydrate and lipid contents of adult mosquitoes are not meaningfully affected by temperature but are altered by aging: carbohydrate content increases with age whereas lipid content increases over the first few days of adulthood and then decreases. Protein content decreases with both rising temperature and aging, and the aging-associated decrease accelerates at warmer temperatures. Altogether, temperature and age, individually and to a lesser extent interactively, shape the size and composition of adult mosquitoes. 
    more » « less