skip to main content


Title: Mowers versus growers: Riparian buffer management in the Southern Blue Ridge Mountains, USA
Abstract

Despite long‐standing knowledge of the benefits of riparian buffers for mitigating nonpoint source pollution, many streams are unprotected by buffers. Even landowners who understand ecological values of buffers mow riparian vegetation to the streambank. Do trends in rural riparian conditions reflect the development of riparian forest science? What motivates residential riparian management actions? Using high‐resolution orthoimagery, we quantified riparian conditions and trends between 1998 and 2015 in the rural upper Little Tennessee River basin in Macon County, North Carolina and explored how landowners view riparian zone management and riparian restoration programs. Buffer composition in 2015 was as follows:no buffer(32.5%),narrow(19.3%),forested(26.7%),shrub(7.2%), andintermediate(7.0%). Relative to 1998, the greatest decrease occurred in theno bufferclass (−17.7%, 46 km) and the largest increases occurred in theshrub(+72.5%, 20 km) and narrow (12.6%, 14 km) classes.Forestedbuffer marginally increased. Semi‐structured interview data suggest that landowners prioritize recreational and scenic aspects of riparian buffers over ecological functions such as filtration and bank stabilization. Riparian restoration programs might be made more enticing to non‐adopters if outreach language appealed to landowner priorities, design elements demonstrated intentional management, and program managers highlighted areas where ecological goals and landowner values align.

 
more » « less
PAR ID:
10419739
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
59
Issue:
4
ISSN:
1093-474X
Page Range / eLocation ID:
p. 803-823
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed “chemical cocktails”, in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e.,permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g.,Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.

     
    more » « less
  2. Abstract

    Riparian forests are essential for stream ecological processes in arid and semiarid regions, however, they are often highly altered by the rapid expansion of urban areas. To maintain riparian ecosystems services, it is important to better understand the effects of urbanization on riparian forests. We quantified the three‐dimensional (3D) structure and woody species composition of a riparian corridor in Utah, USA, to evaluate patterns of vegetation along stream reaches that flow through distinct hydrologic domains (with gaining and losing reaches) and through a rapid rural‐to‐urban gradient. By using LiDAR imaging and field observations, we explore the extent to which the riparian vegetation structure follows patterns of topography linked to energy and water subsidies and patterns of human influence along the stream. Whereas natural reaches of Red Butte Creek were characterized by native vegetation and typical riparian species (e.g.,Betula occidentalis), urbanized reaches had higher numbers of introduced plants (e.g.,Acer platanoides) and more upland species (e.g.,Quercus gambelii). Urban reaches were also characterized by exceptionally high trees (>18 m) in older residential neighbourhoods. In the natural area, canopy height was negatively correlated with height above the river (HAR). Additionally, we found higher cover and taller canopies on north‐facing aspects. These results show that LiDAR data, in combination with ground observations, can reveal strong influences of hydrology as well as land use in different canopy layers of riparian forests. We suggest that the decision making of individual landowners shapes vegetation beyond natural hydrological patterns, with implications for riparian forest management and restoration.

     
    more » « less
  3. Hydrologic alterations associated with urbanization can weaken connections between riparian zones, streams, and uplands, leading to negative effects on the ability of riparian zones to intercept pollutants carried by surface water runoff and groundwater flow such as nitrate and phosphate. We analyzed the monthly water table as an indicator of riparian connectivity, along with groundwater NO3 and PO4concentrations, at four riparian sites within and near the Gwynns Falls Watershed in Baltimore, MD, from 1998 to 2018. The sites included one forested reference site (Oregon Ridge), two suburban riparian sites (Glyndon and Gwynnbrook), and one urban riparian site (Cahill) with at least two locations and four monitoring wells, located 5 m from the center of the stream, at each site. Results show an increase in connectivity as indicated by shallower water tables at two of the four sites studied: Glyndon and Cahill. This change in connectivity was associated with decreases in NO3 at Glyndon and increases in PO4 at Glyndon, Gwynnbrook, and Cahill. These changes are consistent with previous studies showing that shallower water table depths increase anaerobic conditions, which increase NO3 consumption by denitrification and decrease PO4 retention. The absence of change in the forested reference site, where climate would be expected to be the key driver, suggests that other drivers, including best management practices and stream restoration projects, could be affecting riparian water tables at the two suburban sites and the one urban site. Further research into the mechanisms behind these changes and site‐specific dynamics is needed. 
    more » « less
  4. The Baltimore Ecosystem Study (BES) has established a network of long-term permanent biogeochemical study plots. These plots will provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The current network of study plots includes eight forest plots, chosen to represent the range of forest conditions in the area, and four grass plots. These plots are complemented by a network of 200 less intensive study plots located across the Baltimore metropolitan area. Plots are currently instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998. Data from these plots has been published in Groffman et al. (2006, 2009) and Groffman and Pouyat (2009). In November of 1998 four rural, forested plots were established at Oregon Ridge Park in Baltimore County northeast of the Gwynns Falls Watershed. Oregon Ridge Park contains Pond Branch, the forested reference watershed for BES. Two of these four plots are located on the top of a slope; the other two are located midway up the slope. In June of 2010 measurements at the mid-slope sites on Pond Branch were discontinued. Monuments and equipment remain at the two plots. These plots were replaced with two lowland riparian plots; Oregon upper riparian and Oregon lower riparian. Each riparian sites has four 5 cm by 1-2.5 meter depth slotted wells laid perpendicular to the stream, four tension lysimeters at 10 cm depth, five time domain reflectometry probes, and four trace gas flux chambers in the two dominant microtopographic features of the riparian zones - high spots (hummocks) and low spots (hollows). Four urban, forested plots were established in November 1998, two at Leakin Park and two adjacent to Hillsdale Park in west Baltimore City in the Gwynns Falls. One of the plots in Hillsdale Park was abandoned in 2004 due to continued vandalism. In May 1999 two grass, lawn plots were established at McDonogh School in Baltimore County west of the city in the Gwynns Falls. One of these plots is an extremely low intensity management area (mowed once or twice a year) and one is in a low intensity management area (frequent mowing, no fertilizer or herbicide use). In 2009, the McDonogh plots were abandoned due to management changes at the school. Two grass lawn plots were established on the campus of the University of Maryland, Baltimore County (UMBC) in fall 2000. One of these plots is in a medium intensity management area (frequent mowing, moderate applications of fertilizer and herbicides) and one is in a high intensity management area (frequent mowing, high applications of fertilizer and herbicides). Literature Cited Bowden R, Steudler P, Melillo J and Aber J. 1990. Annual nitrous oxide fluxes from temperate forest soils in the northeastern United States. J. Geophys. Res.-Atmos. 95, 13997 14005. Driscoll CT, Fuller RD and Simone DM (1988) Longitudinal variations in trace metal concentrations in a northern forested ecosystem. J. Environ. Qual. 17: 101-107 Goldman, M. B., P. M. Groffman, R. V. Pouyat, M. J. McDonnell, and S. T. A. Pickett. 1995. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biology and Biochemistry 27:281-286. Groffman PM, Holland E, Myrold DD, Robertson GP and Zou X (1999) Denitrification. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 272-290). Oxford University Press, New York Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. Holland EA, Boone R, Greenberg J, Groffman PM and Robertson GP (1999) Measurement of Soil CO2, N2O and CH4 exchange. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Robertson GP, Wedin D, Groffman PM, Blair JM, Holland EA, Nadelhoffer KJ and. Harris D. 1999. Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification and carbon turnover. In: Standard Soil Methods for Long Term Ecological Research (Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Savva, Y., K. Szlavecz, R. V. Pouyat, P. M. Groffman, and G. Heisler. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal 74:469-480." 
    more » « less
  5. Abstract

    How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high‐elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high‐elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.

     
    more » « less