skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple ParA/MinD ATPases coordinate the positioning of disparate cargos in a bacterial cell
Abstract In eukaryotes, linear motor proteins govern intracellular transport and organization. In bacteria, where linear motors involved in spatial regulation are absent, the ParA/MinD family of ATPases organize an array of genetic- and protein-based cellular cargos. The positioning of these cargos has been independently investigated to varying degrees in several bacterial species. However, it remains unclear how multiple ParA/MinD ATPases can coordinate the positioning of diverse cargos in the same cell. Here, we find that over a third of sequenced bacterial genomes encode multiple ParA/MinD ATPases. We identify an organism (Halothiobacillus neapolitanus) with seven ParA/MinD ATPases, demonstrate that five of these are each dedicated to the spatial regulation of a single cellular cargo, and define potential specificity determinants for each system. Furthermore, we show how these positioning reactions can influence each other, stressing the importance of understanding how organelle trafficking, chromosome segregation, and cell division are coordinated in bacterial cells. Together, our data show how multiple ParA/MinD ATPases coexist and function to position a diverse set of fundamental cargos in the same bacterial cell.  more » « less
Award ID(s):
1817478
PAR ID:
10419754
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Komeili, Arash (Ed.)
    ABSTRACT The bacterial nucleoid is not just a genetic repository—it serves as a dynamic scaffold for spatially organizing key cellular components. ParA-family ATPases exploit this nucleoid matrix to position a wide range of cargos, yet how nucleoid compaction influences these positioning reactions remains poorly understood. We previously characterized the maintenance of carboxysome distribution (Mcd) system in the cyanobacteriumSynechococcus elongatusPCC 7942, where the ParA-like ATPase McdA binds the nucleoid and interacts with its partner protein, McdB, to generate dynamic gradients that distribute carboxysomes for optimal carbon fixation. Here, we investigate how nucleoid compaction impacts carboxysome positioning, particularly during metabolic dormancy when McdAB activity is downregulated. We demonstrate that a compacted nucleoid maintains carboxysome organization in the absence of active McdAB-driven positioning. This finding reveals that the nucleoid is not merely a passive matrix for positioning but a dynamic player in spatial organization. Given the widespread role of ParA-family ATPases in the positioning of diverse cellular cargos, our study suggests that the nucleoid compaction state is a fundamental, yet underappreciated, determinant of mesoscale organization across bacteria. IMPORTANCEBacteria can organize their internal components in specific patterns to ensure proper function and faithful inheritance after cell division. In the cyanobacteriumSynechococcus elongatus, protein-based compartments called carboxysomes fix carbon dioxide and are distributed in the cell by a two-protein positioning system. Here, we discovered that when cells stop growing or face stress, these positioning proteins stop working, yet carboxysomes remain distributed in the cell. Our study shows that the bacterial chromosome, which holds genetic information, can also act as a flexible scaffold that holds carboxysomes in place when compacted. This insight reveals that the bacterial chromosome plays a key physical role in organizing the cell. Similar positioning systems are found across many types of bacteria; therefore, our findings suggest that nucleoid compaction may be a universal and underappreciated factor in maintaining spatial order in cells that are not actively growing. 
    more » « less
  2. Across bacteria, protein-based organelles called bacterial microcompartments (BMCs) encapsulate key enzymes to regulate their activities. The model BMC is the carboxysome that encapsulates enzymes for CO2fixation to increase efficiency and is found in many autotrophic bacteria, such as cyanobacteria. Despite their importance in the global carbon cycle, little is known about how carboxysomes are spatially regulated. We recently identified the two-factor system required for the maintenance of carboxysome distribution (McdAB). McdA drives the equal spacing of carboxysomes via interactions with McdB, which associates with carboxysomes. McdA is a ParA/MinD ATPase, a protein family well studied in positioning diverse cellular structures in bacteria. However, the adaptor proteins like McdB that connect these ATPases to their cargos are extremely diverse. In fact, McdB represents a completely unstudied class of proteins. Despite the diversity, many adaptor proteins undergo phase separation, but functional roles remain unclear. Here, we define the domain architecture of McdB from the model cyanobacteriumSynechococcus elongatusPCC 7942, and dissect its mode of biomolecular condensate formation. We identify an N-terminal intrinsically disordered region (IDR) that modulates condensate solubility, a central coiled-coil dimerizing domain that drives condensate formation, and a C-terminal domain that trimerizes McdB dimers and provides increased valency for condensate formation. We then identify critical basic residues in the IDR, which we mutate to glutamines to solubilize condensates. Finally, we find that a condensate-defective mutant of McdB has altered association with carboxysomes and influences carboxysome enzyme content. The results have broad implications for understanding spatial organization of BMCs and the molecular grammar of protein condensates. 
    more » « less
  3. ABSTRACT Themaintenance ofcarboxysomedistribution (Mcd) system comprises the proteins McdA and McdB, which spatially organize carboxysomes to promote efficient carbon fixation and ensure their equal inheritance during cell division. McdA, a member of the ParA/MinD family of ATPases, forms dynamic gradients on the nucleoid that position McdB-bound carboxysomes. McdB belongs to a widespread but poorly characterized class of ParA/MinD partner proteins, and the molecular basis of its interaction with McdA remains unclear. Here, we demonstrate that the N-terminal 20 residues ofH. neapolitanusMcdB are both necessary and sufficient for interaction with McdA. Within this region, we identify three lysine residues whose individual substitution modulates McdA binding and leads to distinct carboxysome organization phenotypes. Notably, lysine 7 (K7) is critical for McdA interaction: substitutions at this site result in the formation of a single carboxysome aggregate positioned at mid-nucleoid. This phenotype contrasts with that of an McdB deletion, in which carboxysome aggregates lose their nucleoid association and become sequestered at the cell poles. These findings suggest that weakened McdA–McdB interactions are sufficient to maintain carboxysome aggregates on the nucleoid but inadequate for partitioning individual carboxysomes across it. We propose that, within the ParA/MinD family of ATPases, cargo positioning and partitioning are mechanistically separable: weak interactions with the cognate partner can mediate positioning, whereas effective partitioning requires stronger interactions capable of overcoming cargo self-association forces. 
    more » « less
  4. Goley, Erin (Ed.)
    Carboxysomes, the most prevalent and well-studied anabolic bacterial microcompartment, play a central role in efficient carbon fixation by cyanobacteria and proteobacteria. In previous studies, we identified the two-component system called McdAB that spatially distributes carboxysomes across the bacterial nucleoid. Maintenance of carboxysome distribution protein A (McdA), a partition protein A (ParA)-like ATPase, forms a dynamic oscillating gradient on the nucleoid in response to the carboxysome-localized Maintenance of carboxysome distribution protein B (McdB). As McdB stimulates McdA ATPase activity, McdA is removed from the nucleoid in the vicinity of carboxysomes, propelling these proteinaceous cargos toward regions of highest McdA concentration via a Brownian-ratchet mechanism. How the ATPase cycle of McdA governs its in vivo dynamics and carboxysome positioning remains unresolved. Here, by strategically introducing amino acid substitutions in the ATP-binding region of McdA, we sequentially trap McdA at specific steps in its ATP cycle. We map out critical events in the ATPase cycle of McdA that allows the protein to bind ATP, dimerize, change its conformation into a DNA-binding state, interact with McdB-bound carboxysomes, hydrolyze ATP, and release from the nucleoid. We also find that McdA is a member of a previously unstudied subset of ParA family ATPases, harboring unique interactions with ATP and the nucleoid for trafficking their cognate intracellular cargos. 
    more » « less
  5. Abstract How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in theDrosophilawing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis. 
    more » « less