Abstract The burgeoning field of semiconductor‐mediated organic conversion is of paramount significance, with zinc indium sulfide (ZnIn2S4) emerging as a standout candidate owing to its benign nature, optimal bandgap, extensive light absorption spectrum, remarkable physicochemical properties, and straightforward synthesis. This review examines the latest breakthroughs and the trajectory of ZnIn2S4‐based photocatalysts in the realm of selective organic transformation. We start with a distinct overview of the intrinsic physical attributes of ZnIn2S4and the underlying mechanisms driving its efficacy in photocatalytic organic transformations. Subsequently, the preparation methods of ZnIn2S4are summarized. The main focus is the state‐of‐the‐art photocatalytic application of various ZnIn2S4‐based photocatalysts, such as redox reactions, the construction of C−C, C−S and S−S bonds, and the cleavage of C−O, C−C, and C=C bonds. In the conclusion part, we provide our perspectives on the prospective advancements and the remaining challenges that lie ahead in the optimization of ZnIn2S4‐based photocatalysts, with the ultimate goal of enhancing their efficacy for a diverse array of photosynthetic applications. It is anticipated to inspire the strategic engineering of ZnIn2S4and other semiconductor‐based photocatalysts for various artificial photosynthesis reactions.
more »
« less
Photocatalytic Ketyl Radical Initiated C ketyl −C sp2 /C sp3 Coupling on ZnIn 2 S 4
Abstract Visible‐light‐driven C−C bond formation utilizing ketyl radical (Cketyl) species has attracted increasing attention recently, as it provides a direct route for the synthesis of complex molecules. However, the most‐developed homogeneous photocatalytic systems for the generation and utilization of ketyl radicals usually entail noble metal‐based (e. g., Ru and Ir) photosensitizers, which suffer from not only high cost but also potential degradation and hence pose challenges in product separation and purification. In contrast, readily accessible, inexpensive, and recyclable semiconductors represent a class of attractive and alternative photocatalysts but remain much less explored for photocatalytic ketyl radical initiated C−C bond formation. This work demonstrates that a wide range of industrially important chemicals, including substituted chromanes and tertiary alcohols, can be produced on ZnIn2S4under visible light irradiation through intramolecular cyclization (Cketyl−Csp2) and intermolecular cross‐coupling (Cketyl−Csp3) reactions, respectively, using ketyl radicals. A suite of experimental studies aided by computational investigation were carried out to shed light on the mechanistic insights of these two types of ketyl radical initiated C−C coupling reactions on ZnIn2S4.
more »
« less
- PAR ID:
- 10419761
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 33
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Single-electron reduction of a carbonyl to a ketyl enables access to a polarity-reversed platform of reactivity for this cornerstone functional group. However, the synthetic utility of the ketyl radical is hindered by the strong reductants necessary for its generation, which also limit its reactivity to net reductive mechanisms. We report a strategy for net redox-neutral generation and reaction of ketyl radicals. The in situ conversion of aldehydes to α-acetoxy iodides lowers their reduction potential by more than 1 volt, allowing for milder access to the corresponding ketyl radicals and an oxidative termination event. Upon subjecting these iodides to a dimanganese decacarbonyl precatalyst and visible light irradiation, an atom transfer radical addition (ATRA) mechanism affords a broad scope of vinyl iodide products with highZ-selectivity.more » « less
-
Abstract The trifluoromethoxy (OCF3) radical is of great importance in organic chemistry. Yet, the catalytic and selective generation of this radical at room temperature and pressure remains a longstanding challenge. Herein, the design and development of a redox‐active cationic reagent (1) that enables the formation of the OCF3radical in a controllable, selective, and catalytic fashion under visible‐light photocatalytic conditions is reported. More importantly, the reagent allows catalytic, intermolecular C−H trifluoromethoxylation of a broad array of (hetero)arenes and biorelevant compounds. Experimental and computational studies suggest single electron transfer (SET) from excited photoredox catalysts to1resulting in exclusive liberation of the OCF3radical. Addition of this radical to (hetero)arenes gives trifluoromethoxylated cyclohexadienyl radicals that are oxidized and deprotonated to afford the products of trifluoromethoxylation.more » « less
-
null (Ed.)Due to its clean and sustainable nature, solar energy has been widely recognized as a green energy source in driving a variety of reactions, ranging from small molecule activation and organic transformation to biomass valorization. Within this context, organic reactions coupled with H 2 evolution via semiconductor-based photocatalytic systems under visible light irradiation have gained increasing attention in recent years, which utilize both excited electrons and holes generated on semiconductors and produce two types of value-added products, organics and H 2 , simultaneously. Based on the nature of the organic reactions, in this review article we classify semiconductor-based photocatalytic organic transformations and H 2 evolution into three categories: (i) photocatalytic organic oxidation reactions coupled with H 2 production, including oxidative upgrading of alcohols and biomass-derived intermediate compounds; (ii) photocatalytic oxidative coupling reactions integrated with H 2 generation, such as C–C, C–N, and S–S coupling reactions; and (iii) photo-reforming reactions together with H 2 formation using organic plastics, pollutants, and biomass as the substrates. Representative heterogeneous photocatalytic systems will be highlighted. Specific emphasis will be placed on their synthesis, characterization, and photocatalytic mechanism, as well as the organic reaction scope and practical application.more » « less
-
Not AvailableAn unmet challenge in radical relay difunctionalization of alkenes is incorporation of two discrete transient radicals in a regiocontrolled manner under transition metal-free conditions. Current protocols typically rely on persistent radicals or organometallic surrogates to trap radical adducts, thereby suppressing the undesired reactions but limiting the diversity. The direct use of two transient radicals remains synthetically elusive. We present a visible-light photoredox catalyzed alkene dialkylation strategy via a kinetically guided conjugative radical-radical coupling. This transition-metal-free approach enables two direct C(sp3)−C(sp3) bond formations across the C=C double bond using alkyl and allyl or benzyl radicals. Mechanistic investigations reveal the radical nature of the process. The success of this approach hinges on kinetically controlled radical addition to alkene substrates and the steric protection of the resulting radical adducts. This mild and functional-group tolerant reaction exhibits broad substrate scope and tolerates structurally complex substrates, highlighting its potential for late-stage functionalization.more » « less
An official website of the United States government
