skip to main content


Title: Multi‐scale relationships in thermal limits within and between two cold‐water frog species uncover different trends in physiological vulnerability
Abstract

1. Critical thermal limits represent an important component of an organism's capacity to cope with future temperature changes. Understanding the drivers of variation in these traits may uncover patterns in physiological vulnerability to climate change. Local temperature extremes have emerged as a major driver of thermal limits, although their effects can be mediated by the exploitation of fine‐scale spatial variation in temperature through behavioural thermoregulation.

2. Here, we investigated thermal limits along elevation gradients within and between two cold‐water frog species (Ascaphusspp.), one with a coastal distribution (A. truei) and the other with a continental range (A. montanus). We quantified thermal limits for over 700 tadpoles, representing multiple populations from each species. We combined local temporal and fine‐scale spatial temperature data to quantify local thermal landscapes (i.e., thermalscapes), including the opportunity for behavioural thermoregulation.

3. Lower thermal limits for either species could not be reached experimentally without the water freezing, suggesting that cold tolerance is <0.3°C. By contrast, upper thermal limits varied among populations, but this variation only reflected local temperature extremes inA. montanus, perhaps as a consequence of the greater variation in stream temperatures across its range. Lastly, we found minimal fine‐scale spatial variability in temperature, suggesting limited opportunity for behavioural thermoregulation and thus increased vulnerability to warming for all populations.

4. By quantifying local thermalscapes, we uncovered different trends in the relative vulnerability of populations across elevation for each species. InA. truei, physiological vulnerability decreased with elevation, whereas inA. montanus, all populations were equally physiologically vulnerable. These results highlight how similar environments can differentially shape physiological tolerance and patterns of vulnerability of species, and in turn impact their vulnerability to future warming.

 
more » « less
Award ID(s):
2221744 1838282
NSF-PAR ID:
10419770
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Freshwater Biology
Volume:
68
Issue:
7
ISSN:
0046-5070
Page Range / eLocation ID:
p. 1267-1278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Populations of cold‐adapted species at the trailing edges of geographic ranges are particularly vulnerable to the negative effects of climate change from the combination of exposure to warm temperatures and high sensitivity to heat. Many of these species are predicted to decline under future climate scenarios, but they could persist if they can adapt to warming climates either physiologically or behaviourally. We aim to understand local variation in contemporary habitat use and use this information to identify signs of adaptive capacity. We focus on moose (Alces alces), a charismatic species of conservation and public interest.

    Location

    The northeastern United States, along the trailing edge of the moose geographic range in North America.

    Methods

    We compiled data on occurrences and habitat use of moose from remote cameras and GPS collars across the northeastern United States. We use these data to build habitat suitability models at local and regional spatial scales and then to predict future habitat suitability under climate change. We also use fine‐scale GPS data to model relationships between habitat use and temperature on a daily temporal scale and to predict future habitat use.

    Results

    We find that habitat suitability for moose will decline under a range of climate change scenarios. However, moose across the region differ in their use of climatic and habitat space, indicating that they could exhibit adaptive capacity. We also find evidence for behavioural responses to weather, where moose increase their use of forested wetland habitats in warmer places and/or times.

    Main conclusions

    Our results suggest that there will be significant shifts in moose distribution due to climate change. However, if there is spatial variation in thermal tolerance, trailing‐edge populations could adapt to climate change. We highlight that prioritizing certain habitats for conservation (i.e., thermal refuges) could be crucial for this adaptation.

     
    more » « less
  2. Abstract

    Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal‐limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold‐water species at‐risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine‐scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site‐specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake‐stream divergence. We detected patterns of population structure on a highly local spatial scale that could not be explained by isolation by distance or stream connectivity. Finally, we showed that individual thermal tolerance was positively correlated with genetic variation, suggesting that sites with increased genetic diversity may be better at tolerating novel stress. Our results highlight the importance of considering intraspecific variation in understanding population vulnerability and stress response.

     
    more » « less
  3. Abstract

    Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-rearedBombus vosnesenskiiworkers. We analyze bees reared from latitudinal (35.7–45.7°N) and altitudinal (7–2154 m) extremes of the species’ range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.

     
    more » « less
  4. Abstract

    Differences in population vulnerability to warming are defined by spatial patterns in thermal adaptation. These patterns may be driven by natural selection over spatial environmental gradients, but can also be shaped by gene flow, especially in marine taxa with high dispersal potential. Understanding and predicting organismal responses to warming requires disentangling the opposing effects of selection and gene flow. We begin by documenting genetic divergence of thermal tolerance and developmental phenotypic plasticity. Ten populations of the widespread copepodAcartia tonsawere collected from sites across a large thermal gradient, ranging from the Florida Keys to Northern New Brunswick, Canada (spanning over 20° latitude). Thermal performance curves (TPCs) from common garden experiments revealed local adaptation at the sampling range extremes, with thermal tolerance increasing at low latitudes and decreasing at high latitudes. The opposite pattern was observed in phenotypic plasticity, which was strongest at high latitudes. No relationship was observed between phenotypic plasticity and environmental variables. Instead, the results are consistent with the hypothesis of a trade‐off between thermal tolerance and the strength of phenotypic plasticity. Over a large portion of the sampled range, however, we observed a remarkable lack of differentiation of TPCs. To examine whether this lack of divergence is the result of selection for a generalist performance curve or constraint by gene flow, we analyzed cytochrome oxidase I mtDNA sequences, which revealed four distinct genetic clades, abundant genetic diversity, and widely distributed haplotypes. Strong divergence in thermal performance within genetic clades, however, suggests that the pace of thermal adaptation can be relatively rapid. The combined insight from the laboratory physiological experiments and genetic data indicate that gene flow constrains differentiation of TPCs. This balance between gene flow and selection has implications for patterns of vulnerability to warming. Taking both genetic differentiation and phenotypic plasticity into account, our results suggest that local adaptation does not increase vulnerability to warming, and that low‐latitude populations in general may be more vulnerable to predicted temperature change over the next century.

     
    more » « less
  5. Estimates of organismal thermal tolerance are frequently used to assess physiological risk from warming, yet the assumption that these estimates are predictive of mortality has been called into question. We tested this assumption in the cold-water-specialist frog, Ascaphus montanus . For seven populations, we used dynamic experimental assays to measure tadpole critical thermal maximum (CTmax) and measured mortality from chronic thermal stress for 3 days at different temperatures. We tested the relationship between previously estimated population CTmax and observed mortality, as well as the strength of CTmax as a predictor of mortality compared to local stream temperatures capturing varying timescales. Populations with higher CTmax experienced significantly less mortality in the warmest temperature treatment (25°C). We also found that population CTmax outperformed stream temperature metrics as the top predictor of observed mortality. These results demonstrate a clear link between CTmax and mortality from thermal stress, contributing evidence that CTmax is a relevant metric for physiological vulnerability assessments. 
    more » « less