skip to main content


Title: A Synthetic Data Integration Framework to Leverage External Summary-Level Information from Heterogeneous Populations
Abstract

There is a growing need for flexible general frameworks that integrate individual-level data with external summary information for improved statistical inference. External information relevant for a risk prediction model may come in multiple forms, through regression coefficient estimates or predicted values of the outcome variable. Different external models may use different sets of predictors and the algorithm they used to predict the outcome Y given these predictors may or may not be known. The underlying populations corresponding to each external model may be different from each other and from the internal study population. Motivated by a prostate cancer risk prediction problem where novel biomarkers are measured only in the internal study, this paper proposes an imputation-based methodology, where the goal is to fit a target regression model with all available predictors in the internal study while utilizing summary information from external models that may have used only a subset of the predictors. The method allows for heterogeneity of covariate effects across the external populations. The proposed approach generates synthetic outcome data in each external population, uses stacked multiple imputation to create a long dataset with complete covariate information. The final analysis of the stacked imputed data is conducted by weighted regression. This flexible and unified approach can improve statistical efficiency of the estimated coefficients in the internal study, improve predictions by utilizing even partial information available from models that use a subset of the full set of covariates used in the internal study, and provide statistical inference for the external population with potentially different covariate effects from the internal population.

 
more » « less
PAR ID:
10419795
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
79
Issue:
4
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 3831-3845
Size(s):
p. 3831-3845
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    In many observational longitudinal studies, the outcome of interest presents a skewed distribution, is subject to censoring due to detection limit or other reasons, and is observed at irregular times that may follow a outcome-dependent pattern. In this work, we consider quantile regression modeling of such longitudinal data, because quantile regression is generally robust in handling skewed and censored outcomes and is flexible to accommodate dynamic covariate-outcome relationships. Specifically, we study a longitudinal quantile regression model that specifies covariate effects on the marginal quantiles of the longitudinal outcome. Such a model is easy to interpret and can accommodate dynamic outcome profile changes over time. We propose estimation and inference procedures that can appropriately account for censoring and irregular outcome-dependent follow-up. Our proposals can be readily implemented based on existing software for quantile regression. We establish the asymptotic properties of the proposed estimator, including uniform consistency and weak convergence. Extensive simulations suggest good finite-sample performance of the new method. We also present an analysis of data from a long-term study of a population exposed to polybrominated biphenyls (PBB), which uncovers an inhomogeneous PBB elimination pattern that would not be detected by traditional longitudinal data analysis.

     
    more » « less
  2. Summary

    To measure income inequality with right-censored (top-coded) data, we propose multiple-imputation methods for estimation and inference. Censored observations are multiply imputed using draws from a flexible parametric model fitted to the censored distribution, yielding a partially synthetic data set from which point and variance estimates can be derived using complete-data methods and appropriate combination formulae. The methods are illustrated using US Current Population Survey data and the generalized beta of the second kind distribution as the imputation model. With Current Population Survey internal data, we find few statistically significant differences in income inequality for pairs of years between 1995 and 2004. We also show that using Current Population Survey public use data with cell mean imputations may lead to incorrect inferences. Multiply-imputed public use data provide an intermediate solution.

     
    more » « less
  3. Summary

    Analysing secondary outcomes is a common practice for case–control studies. Traditional secondary analysis employs either completely parametric models or conditional mean regression models to link the secondary outcome to covariates. In many situations, quantile regression models complement mean-based analyses and provide alternative new insights on the associations of interest. For example, biomedical outcomes are often highly asymmetric, and median regression is more useful in describing the ‘central’ behaviour than mean regressions. There are also cases where the research interest is to study the high or low quantiles of a population, as they are more likely to be at risk. We approach the secondary quantile regression problem from a semiparametric perspective, allowing the covariate distribution to be completely unspecified. We derive a class of consistent semiparametric estimators and identify the efficient member. The asymptotic properties of the resulting estimators are established. Simulation results and a real data analysis are provided to demonstrate the superior performance of our approach with a comparison with the only existing approach so far in the literature.

     
    more » « less
  4. Abstract

    Small area estimation (SAE) has become an important tool in official statistics, used to construct estimates of population quantities for domains with small sample sizes. Typical area-level models function as a type of heteroscedastic regression, where the variance for each domain is assumed to be known and plugged in following a design-based estimate. Recent work has considered hierarchical models for the variance, where the design-based estimates are used as an additional data point to model the latent true variance in each domain. These hierarchical models may incorporate covariate information but can be difficult to sample from in high-dimensional settings. Utilizing recent distribution theory, we explore a class of Bayesian hierarchical models for SAE that smooth both the design-based estimate of the mean and the variance. In addition, we develop a class of unit-level models for heteroscedastic Gaussian response data. Importantly, we incorporate both covariate information as well as spatial dependence, while retaining a conjugate model structure that allows for efficient sampling. We illustrate our methodology through an empirical simulation study as well as an application using data from the American Community Survey.

     
    more » « less
  5. Abstract

    With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.

     
    more » « less