skip to main content


Title: Tight power and energy coupling constraints of energy storage resources for unit commitment
Abstract

Energy Storage Resources (ESRs) can help promote high penetrations of renewable generation and shift the peak load. However, the increasing number of ESRs and their features different from conventional generators bring computational challenges to operations of wholesale electricity markets. In order to improve the computational efficiency, this paper tightens the generic ESR formulation for unit commitment. To avoid the complexity caused by ESR operations in both discharge and charge directions, a novel “decoupled analysis” is conducted to analyze one direction at a time. For each direction, ESRs over two and three time periods are categorized into several types based on their parameters. For each type, our recent four‐step systematic formulation tightening approach is used to construct the corresponding tight formulation. In order to consider more periods without analyzing all the drastically increased number of types, a series of major types are selected based on how many periods an ESR is able to discharge (charge) consecutively at the upper power limit. A related generic form of tight constraints over multiple periods is established. Moreover, validity and facet‐defining proofs of our tight constraints have been provided. Numerical testing results illustrate the tightening process and demonstrate computational benefits of the tightened formulations.

 
more » « less
NSF-PAR ID:
10419830
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1049
Date Published:
Journal Name:
IET Renewable Power Generation
Volume:
17
Issue:
9
ISSN:
1752-1416
Page Range / eLocation ID:
p. 2276-2289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may combinatorial difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data preprocessing stage, then a solution can be obtained by using linear programming methods without combinatorial difficulties. The tightening process, however, is fundamentally challenging because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data preprocessing stage. It is a major advancement of our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary and continuous variables only, it is proved that the vertices of the convex hull can be obtained based on vertices of the linear problem after relaxing binary requirements. These vertices are then converted to tightened constraints for general use. This approach significantly improves our previous results on tightening individual operations. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved. 
    more » « less
  2. Multiperiod blending has a number of important applications in a range of industrial sectors. It is typically formulated as a nonconvex mixed integer nonlinear program (MINLP), which involves binary variables and bilinear terms. In this study, we first propose a reformulation of the constraints involving bilinear terms using lifting. We introduce a method for calculating tight bounds on the lifted variables calculated by aggregating multiple constraints. We propose valid constraints derived from the reformulation-linearization technique (RLT) that use the bounds on the lifted variables to further tighten the formulation. Computational results indicate our method can substantially reduce the solution time and optimality gap. Summary of Contribution: In this paper, we study the multiperiod blending problem, which has a number of important applications in a range of industrial sectors, such as refining, chemical production, mining, and wastewater management. Solving this problem efficiently leads to significant economic and environmental benefits. However, solving even medium-scale instances to global optimality remains challenging. To address this challenge, we propose a variable bound tightening algorithm and tightening constraints for multiperiod blending. Computational results show that our methods can substantially reduce the solution time and optimality gap. 
    more » « less
  3. Unit Commitment is usually formulated as a Mixed Binary Linear Programming (MBLP) problem. When considering a large number of units, state-of-the-art methods such as branch-and-cut may experience difficulties. To address this, an important but much overlooked direction is formulation transformation since if the problem constraints can be transformed to directly delineate the convex hull in the data pre-processing stage, then a solution can be obtained by using linear programming methods without combinatorial difficulties. In the literature, a few tightened formulations for single units with constant ramp rates were reported without presenting how they were derived. In this paper, a systematic approach is developed to tighten formulations in the data pre-processing stage. The idea is to derive vertices of the convex hull without binary requirements. From them, vertices of the original convex hull can be innovatively obtained. These vertices are converted to tightened constraints, which are then parameterized based on unit parameters for general use, tremendously reducing online computational requirements. By analyzing short-time horizons, e.g., two or three hours, tightened formulations for single units with constant and generation-dependent ramp rates are obtained, beyond what is in the literature. Results demonstrate computational efficiency and solution quality benefits of formulation tightening. 
    more » « less
  4. Verifying real-world programs often requires inferring loop invariants with nonlinear constraints. This is especially true in programs that perform many numerical operations, such as control systems for avionics or industrial plants. Recently, data-driven methods for loop invariant inference have shown promise, especially on linear loop invariants. However, applying data-driven inference to nonlinear loop invariants is challenging due to the large numbers of and large magnitudes of high-order terms, the potential for overfitting on a small number of samples, and the large space of possible nonlinear inequality bounds. In this paper, we introduce a new neural architecture for general SMT learning, the Gated Continuous Logic Network (G-CLN), and apply it to nonlinear loop invariant learning. G-CLNs extend the Continuous Logic Network (CLN) architecture with gating units and dropout, which allow the model to robustly learn general invariants over large numbers of terms. To address overfitting that arises from finite program sampling, we introduce fractional sampling—a sound relaxation of loop semantics to continuous functions that facilitates unbounded sampling on the real domain. We additionally design a new CLN activation function, the Piecewise Biased Quadratic Unit (PBQU), for naturally learning tight inequality bounds. We incorporate these methods into a nonlinear loop invariant inference system that can learn general nonlinear loop invariants. We evaluate our system on a benchmark of nonlinear loop invariants and show it solves 26 out of 27 problems, 3 more than prior work, with an average runtime of 53.3 seconds. We further demonstrate the generic learning ability of G-CLNs by solving all 124 problems in the linear Code2Inv benchmark. We also perform a quantitative stability evaluation and show G-CLNs have a convergence rate of 97.5% on quadratic problems, a 39.2% improvement over CLN models. 
    more » « less
  5. null (Ed.)
    The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services. 
    more » « less