skip to main content


Title: Oxic–anoxic cycling promotes coupling between complex carbon metabolism and denitrification in woodchip bioreactors
Abstract

Denitrifying woodchip bioreactors (WBRs) are increasingly used to manage the release of non‐point source nitrogen (N) by stimulating microbial denitrification. Woodchips serve as a renewable organic carbon (C) source, yet the recalcitrance of organic C in lignocellulosic biomass causes many WBRs to be C‐limited. Prior studies have observed that oxic–anoxic cycling increased the mobilization of organic C, increased nitrate (NO3) removal rates, and attenuated production of nitrous oxide (N2O). Here, we use multi‐omics approaches and amplicon sequencing of fungal 5.8S‐ITS2 and prokaryotic 16S rRNA genes to elucidate the microbial drivers for enhanced NO3removal and attenuated N2O production under redox‐dynamic conditions. Transient oxic periods stimulated the expression of fungal ligninolytic enzymes, increasing the bioavailability of woodchip‐derived C and stimulating the expression of denitrification genes. Nitrous oxide reductase (nosZ) genes were primarily clade II, and the ratio of clade II/clade InosZtranscripts during the oxic–anoxic transition was strongly correlated with the N2O yield. Analysis of metagenome‐assembled genomes revealed that many of the denitrifying microorganisms also have a genotypic ability to degrade complex polysaccharides like cellulose and hemicellulose, highlighting the adaptation of the WBR microbiome to the ecophysiological niche of the woodchip matrix.

 
more » « less
NSF-PAR ID:
10419833
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
25
Issue:
9
ISSN:
1462-2912
Page Range / eLocation ID:
p. 1696-1712
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Denitrification in woodchip bioreactors (WBRs) treating agricultural drainage and runoff is frequently carbon-limited due to the recalcitrance of carbon (C) in lignocellulosic woodchip biomass. Recent research has shown that redox fluctuations, achieved through periodic draining and re-flooding of WBRs, can increase nitrate removal rates by enhancing the release of labile C during oxic periods. While dying–rewetting (DRW) cycles appear to hold great promise for improving the performance of denitrifying WBRs, redox fluctuations in nitrogen-rich environments are commonly associated with enhanced emissions of the greenhouse gas nitrous oxide (N 2 O) due to inhibition of N 2 O reduction in microaerophilic conditions. Here, we evaluate the effects of oxic–anoxic cycling associated with DRW on the quantity and quality of C mobilized from woodchips, nitrate removal rates, and N 2 O accumulation in a complementary set of flow-through and batch laboratory bioreactors at 20 °C. Redox fluctuations significantly increased nitrate removal rates from 4.8–7.2 g N m −3 d −1 in a continuously saturated (CS) reactor to 9.8–11.2 g N m −3 d −1 24 h after a reactor is drained and re-saturated. Results support the theory that DRW conditions lead to faster NO 3 − removal rates by increasing mobilization of labile organic C from woodchips, with lower aromaticity in the dissolved C pool of oxic–anoxic reactors highlighting the importance of lignin breakdown to overall carbon release. There was no evidence for greater N 2 O accumulation, measured as N 2 O product yields, in the DRW reactors compared to continuously saturated reactors. We propose that greater organic C availability for N 2 O reducers following oxic periods outweighs the effect of microaerophilic inhibition of N 2 O reduction in controlling N 2 O dynamics. Implications of these findings for optimizing DRW cycling to enhance nitrate removal rates in denitrifying WBRs are discussed. 
    more » « less
  2. Summary

    Microbial enzymes often occur as distinct variants that share the same substrate but differ in substrate affinity, sensitivity to environmental conditions, or phylogenetic ancestry. Determining where variants occur in the environment helps identify thresholds that constrain microbial cycling of key chemicals, including the greenhouse gas nitrous oxide (N2O). To understand the enzymatic basis of N2O cycling in the ocean, we mined metagenomes to characterize genes encoding bacterial nitrous oxide reductase (NosZ) catalyzing N2O reduction to N2. We examined data sets from diverse biomes but focused primarily on those from oxygen minimum zones where N2O levels are often elevated. With few exceptions, marinenosZdata sets were dominated by ‘atypical’ clade II gene variants. AtypicalnosZhas been associated with low oxygen, enhanced N2O affinity, and organisms lacking enzymes for complete denitrification, i.e., non‐denitrifiers. AtypicalnosZ often occurred in metagenome‐assembled genomes (MAGs) with nitrate or nitrite respiration genes, although MAGs with genes for complete denitrification were rare. We identified atypicalnosZ in several taxa not previously associated with N2O consumption, in addition to known N2O‐associated groups. The data suggest that marine environments generally select for high N2O‐scavenging ability across diverse taxa and have implications for how N2O concentration may affect N2O removal rates.

     
    more » « less
  3. Abstract

    The creation and/or restoration of wetlands is an important strategy for controlling the release of reactive nitrogen (N) via denitrification, but there can be tradeoffs between enhanced denitrification and the production of nitrous oxide (N2O), a potent greenhouse gas. A knowledge gap in current understanding of belowground wetland N dynamics is the role of gas transfer through the root aerenchyma system of wetland plants as a shortcut emission pathway for N2O in denitrifying wetland soils. This investigation evaluates the significance of mass transfer into gas‐filled root aerenchyma for the N2O budget in wetland mesocosms planted withSagittaria latifoliaWilld. andSchoenoplectus acutus(Muhl. ex Bigelow) Á. Löve & D. Löve. Dissolved gas tracer push–pull tests with N2O and the nonreactive gas tracers helium, sulfur hexafluoride, and ethane were used to estimate first‐order rate constants for gas transfer into roots and microbial N2O reduction and thereby disentangle the effects of root‐mediated gas transport from microbial metabolism on N2O balances in saturated soils. Root‐mediated gas transport was estimated to account for up to 37% of overall N2O removal from the wetland soils. Rates of microbial N2O reduction varied widely based on the organic matter content of the soil media and served as a key control on the fraction of N2O that transferred into roots. This research identifies transport through root aerenchyma as a potential shortcut pathway for N2O emission from wetland soils and sediments and indicates that this process should be considered in both measurements and mechanistic modeling of belowground wetland N dynamics.

     
    more » « less
  4. Abstract

    A chemoautotrophy maximum is present in many anoxic basins at the sulfidic layer's upper boundary, but the factors controlling this feature are poorly understood. In 13 of 31 cruises to the Cariaco Basin, particulate organic carbon (POC) was enriched in13C (δ13CPOCas high as −16‰) within the oxic/sulfidic transition compared to photic zone values (−23 to −26‰). During “heavy” cruises, fluxes of O2and [NO3+ NO2] to the oxic/sulfidic interface were significantly lower than during “light” cruises. Cruises with isotopically heavy POC were more common between 2013 and 2015 when suspended particles below the photic zone tended to be nitrogen rich compared to later cruises. Within the chemoautotrophic layer, nitrogen‐rich particles (molar ratio C/N< 10) were more likely to be13C‐enriched than nitrogen‐poor particles, implying that these inventories were dominated by living cells and fresh detritus rather than laterally transported or extensively decomposed detritus. During heavy cruises,13C enrichments persisted to 1,300 m, providing the first evidence of downward transport of chemoautotrophically produced POC. Dissolved inorganic carbon assimilation during heavy cruises (n= 3) was faster and occurred deeper than during light cruises (n= 2). Metagenomics data from the chemoautotrophic layer during two cruises support prevalence of microorganisms carrying RuBisCO form II genes, which encode a carbon fixation enzyme that discriminates less against heavy isotopes than most other carbon fixation enzymes, and metatranscriptomics data indicate that higher expression of form II RuBisCO genes during the heavy cruises at depths where essential reactants coexist are responsible for the isotopically heavier POC.

     
    more » « less
  5. Abstract

    A few members of the bacterial genusThermushave been shown to be incomplete denitrifiers, terminating with nitrite (NO2) or nitrous oxide (N2O). However, the denitrification abilities of the genus as a whole remain poorly characterized. Here, we describe diverse denitrification phenotypes and genotypes of a collection of 24 strains representing ten species, all isolated from a variety of geothermal systems in China. Confirmed terminal products of nitrate reduction were nitrite or N2O, while nitric oxide (NO) was inferred as the terminal product in some strains. Most strains produced N2O; complete denitrification was not observed. Denitrification phenotypes were largely consistent with the presence of denitrification genes, and strains of the same species often had the same denitrification phenotypes and largely syntenous denitrification gene clusters. Genes fornirSandnirKcoexisted in threeThermus brockianusand threeThermus oshimaigenomes, which is a unique hallmark of some denitrifyingThermusstrains and may be ecologically important. These results show that incomplete denitrification phenotypes are prominent, but variable, within and betweenThermusspecies. The incomplete denitrification phenotypes described here suggestThermusspecies may play important roles in consortial denitrification in high-temperature terrestrial biotopes where sufficient supply of oxidized inorganic nitrogen exists.

     
    more » « less