skip to main content


Title: Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values
Abstract

In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day‐to‐day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time‐series into a 6‐dimensional space with a corresponding EPBR2(0–1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post‐sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset.

 
more » « less
NSF-PAR ID:
10419871
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
6
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The influence of atmospheric planetary waves on the occurrence of irregularities in the low latitude ionosphere is investigated using Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) simulations and Global Observations of the Limb and Disk (GOLD) observations. GOLD observations of equatorial plasma bubbles (EPBs) exhibit a ∼6–8 day periodicity during January–February 2021. Analysis of WACCM‐X simulations, which are constrained to reproduce realistic weather variability in the lower atmosphere, reveals that this coincides with an amplification of the westward propagating wavenumber‐1 quasi‐six day wave (Q6DW) in the mesosphere and lower thermosphere (MLT). The WACCM‐X simulated Rayleigh‐Taylor (R‐T) instability growth rate, considered as a proxy of EPB occurrence, is found to exhibit a ∼6‐day periodicity that is coincident with the enhanced Q6DW in the MLT. Additional WACCM‐X simulations performed with fixed solar and geomagnetic activity demonstrate that the ∼6‐day periodicity in the R‐T instability growth rate is related to the forcing from the lower atmosphere. The simulations suggest that the Q6DW influences the day‐to‐day formation of EPBs through interaction with the migrating semidiurnal tide. This leads to periodic oscillations in the zonal winds, resulting in periodic variability in the strength of the prereversal enhancement, which influences the R‐T instability growth rate and EPBs. The results demonstrate that atmospheric planetary waves, and their interaction with atmospheric tides, can have a significant impact on the day‐to‐day variability of EPBs.

     
    more » « less
  2. Abstract

    Predicting the daily variability of Equatorial Plasma Bubbles (EPBs) is an ongoing scientific challenge. Various methods for predicting EPBs have been developed, however, the research community is yet to scrutinize the methods for evaluating and comparing these prediction models/techniques. In this study, 12 months of co‐located GPS and UHF scintillation observations spanning South America, Atlantic/Western Africa, Southeast Asia, and Pacific sectors are used to evaluate the Generalized Rayleigh‐Taylor (R‐T) growth rates calculated from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM). Various assessment metrics are explored, including the use of significance testing on skill scores for threshold selection. The sensitivity of these skill scores to data set type (i.e., GPS versus UHF) and data set size (30, 50, 60, and 90 days/events) is also investigated. It is shown that between 50 and 90 days is required to achieve a statistically significant skill score. Methods for conducting model‐model comparisons are also explored, including the use of model “sufficiency.” However, it is shown that the results of model‐model comparisons must be carefully interpreted and can be heavily dependent on the data set used. It is also demonstrated that the observation data set must exhibit an appropriate level of daily EPB variability in order to assess the true strength of a given model/technique. Other limitations and considerations on assessment metrics and future challenges for EPB prediction studies are also discussed.

     
    more » « less
  3. Abstract

    This study investigates the underlying physics of equatorial plasma bubbles (EPBs) on 11 December 2019, under solar minimum conditions. The Global‐scale Observations of the Limb and Disk (GOLD) ultraviolet nightglow images exhibit a periodic distribution of reduced emissions related to EPBs. Remarkably, FORMOSAT‐7/COSMIC‐2 (F7/C2) observes a significant altitudinal difference of ~45 km in the bottomside ionosphere between two nearly collocated electron density profiles before the onset of EPBs, indicating the presence of an upwelling. Distinct ionospheric perturbations are also observed in F7/C2 and ground‐based Global Positioning System observations, suggesting that gravity waves may contribute to the upwelling. Simulations with SAMI3/ESF are further carried out to evaluate the upwelling growth and pre‐reversal enhancement (PRE) effect on EPB development. Simulations reveal that the crests of upwellings show a localized uplift of ~50 km, and EPBs only develop from the crest of upwellings. The uplift altitude of upwellings is comparable to the F7/C2 observations and the post‐sunset rise in moderate solar conditions. The polarization electric field (Ep) developed within the upwellings can drive verticalEp × Bdrifts of ~32–35 m/s, which are comparable to the PRE verticalE × Bdrifts. We find that the PRE alone cannot drive EPBs without upwelling growth, but it can facilitate the upwelling growth. Observations and simulations allow us to conclude that upwelling growth could play a vital role in the formation of EPBs.

     
    more » « less
  4. This paper presents a multi-instrument observational analysis of the equatorial plasma bubbles (EPBs) variation over the American sector during a geomagnetically quiet time period of 07–10 December 2019. The day-to-day variability of EPBs and their underlying drivers are investigated through coordinately utilizing the Global-scale Observations of Limb and Disk (GOLD) ultraviolet images, the Ionospheric Connection Explorer (ICON) in-situ and remote sensing data, the global navigation satellite system (GNSS) total electron content (TEC) observations, as well as ionosonde measurements. The main results are as follows: 1) The postsunset EPBs’ intensity exhibited a large day-to-day variation in the same UT intervals, which was fairly noticeable in the evening of December 07, yet considerably suppressed on December 08 and 09, and then dramatically revived and enhanced on December 10. 2) The postsunset linear Rayleigh-Taylor instability growth rate exhibited a different variation pattern. It had a relatively modest peak value on December 07 and 08, yet a larger peak value on December 09 and 10. There was a 2-h time lag of the growth rate peak time in the evening of December 09 from other nights. This analysis did not show an exact one-to-one relationship between the peak growth rate and the observed EPBs intensity. 3) The EPBs’ day-to-day variation has a better agreement with that of traveling ionospheric disturbances and atmospheric gravity waves signatures, which exhibited relatively strong wavelike perturbations preceding/accompanying the observed EPBs on December 07 and 10 yet relatively weak fluctuations on December 08 and 09. These coordinate observations indicate that the initial wavelike seeding perturbations associated with AGWs, together with the catalyzing factor of the instability growth rate, collectively played important roles to modulate the day-to-day variation of EPBs. A strong seeding perturbation could effectively compensate for a moderate strength of Rayleigh-Taylor instability growth rate and therefore their combined effect could facilitate EPB development. Lacking proper seeding perturbations would make it a more inefficient process for the development of EPBs, especially with a delayed peak value of Rayleigh-Taylor instability growth rate. 
    more » « less
  5. Abstract

    The FORMOSAT‐3/COSMIC (F3/C) satellites are used to study the climatology of equatorial plasma bubbles (EPBs) during the low to moderate solar flux years (2008–2013). We use the F3/C total electron content to identify the presence of EPBs and investigate the background conditions for the initiation of EPBs. The results reveal that the EPB activities have strong solar dependence. The longitudinal and seasonal trends of EPBs are highly correlated to the angle between the dusk solar terminator and magnetic field lines near the magnetic equator. Asymmetries of EPBs between solstices and equinoxes exist and could be due partly to the asymmetry of equatorial ionization anomaly structures, which result in longitudinal differences as well. EPBs extend to higher altitudes and latitudes during the ascending phase of Solar Cycle 24 (2011–2013) due mainly to the increase of background electron density. However, an altitudinal asymmetry of EPBs occurs in moderate solar flux years, which is likely due to the suppression or lower growth and occurrence rates of EPBs. In addition to vertical drift, tidal forcing also contributes to the longitudinal and seasonal distributions of EPBs. Upwellings and precursor waves preceding the EPBs are observed climatologically, which likely play a vital role in initiating the EPBs. This study also reveals a vertical connection between the equatorial ionospheric irregularities and atmospheric forcing on a climatological basis.

     
    more » « less